

PERSONALIZED NUTRITION FOR FERTILITY REPORT

Sample ID: 15151112090713 Date of Report: September 5, 2017

Dear Caroline:

Nutrigenomix is pleased to provide you with your Personalized Nutrition and Fitness Report, based on your individual genetic profile. Your recommendations are based on scientific research that has been published in peer-reviewed journals and reviewed by our team of world-renowned experts in the field of nutrigenomics.

Our laboratory has used state-of-the-art genetic testing procedures to analyze the DNA from your saliva sample. We have analyzed your genetic code to determine how your genes can influence nutrition recommendations related to fertility, through nutrient metabolism and requirements, cardiometabolic health, weight management, body composition, food intolerances, eating habits, and fitness performance. Based on these results, we have developed a series of nutrition and fitness recommendations that are aligned with your genetic profile. As new discoveries in the field of nutrigenomics are made, you will have the opportunity to access this information to further fine-tune your personalized nutrition and fitness plan.

You and your healthcare professional can now use the personalized recommendations contained in this report to help you achieve optimal nutritional status and enhance fertility. In this way, you can create a plan to maximize your reproductive potential and overall health and start to eat according to your genes!

Ahmed El-Sohemy, PhD Chief Scientific Officer

Table of Contents

Summary of Results	2
The Science Behind Nutrigenomix	5
NUTRIENT METABOLISM	
Vitamin A (Beta-Carotene)	6
Vitamin B ₁₂	7
Vitamin C	8
Vitamin D	9
Vitamin E	10
Folate	11
Iron	12
Calcium	14
CARDIOMETABOLIC HEALTH	
Caffeine	15
Whole Grains	16
Sodium	17
Omega-3 Fat	18
Saturated Fat	
WEIGHT MANAGEMENT AND BODY COMPOSITION	
Energy Balance	20
Physical Activity	21
Protein	22
Total Fat	23
Saturated and Unsaturated Fat	24
Monounsaturated Fat	25
FOOD INTOLERANCES	
Lactose	26
Gluten	28

EATING HABITS	
Fat Taste Perception	30
Sugar Preference	3 ⁻
Eating Between Meals	32
Starch	
FITNESS AND PHYSICAL ACTIVITY	
Motivation to Exercise	34
Exercise Behavior	35
Power and Strength	36
Endurance	37
Pain	38
Achilles Tendon Injury	39
International Science Advisory Board	40

Summary of Results

Nutrient Metabolism

Dietary Component	Gene, rs Number	Risk Variant	Your Variant	Your Risk	Recommendations
Vitamin A	BCMO1, rs11645428	GG	GG	Elevated	Focus on consuming pre-formed sources of vitamin A daily to meet the RDA. Do not exceed 3000 mcg RAE
Vitamin B ₁₂	FUT2, rs601338	GG or GA	GA	Elevated	Focus on meeting the RDA from bioavailable vitamin B12 sources.
Vitamin C	GSTT1, rs2266633	Del	Ins	Typical	Meet the RDA for vitamin C daily.
Vitamin D	CYP2R1, rs10741657	Algorithm	GA	Elevated	Consume 1000 II I /05 mask vitamin D daily
Vitamin D	GC, rs2282679	Algorithm	GG	Elevated	Consume 1000 IU (25 mcg) vitamin D daily.
Vitamin E	F5, rs6025	CT or TT	CC	Typical	Meet the RDA for vitamin E daily.
Folate	MTHFR, rs1801133	CT or TT	П	Elevated	Meet the RDA for folate daily. If you are pregnant, consume a 400 mcg folic acid supplement daily.
	SLC17A1 rs17342717 HFE rs1800562		CC	Low	
Iron Overload		Algorithm	GG		Follow the recommendations provided in the Low Iron Status section.
	HFE rs1799945		CC		
	TMPRSS6 rs4820268 TFR2 rs7385804 Algorithm		GA	A Elevated	
Low Iron Status		Algorithm	CA		Meet the RDA for iron daily and consume sources of vitamin C with iron-rich foods. If you are pregnant, consume a 16-20 mg iron supplement each day.
	TF rs3811647		AA		
Calcium	GC, rs7041	Algorithm	TG	Elevated	Consume 1200mg of calcium daily.
Calcium	GC, rs4588	AlgoridiiII	CA	⊏ievated	Consume 1200mg of Calcium daily.

Cardiometabolic Health

Dietary Component	Gene, rs Number	Risk Variant	Your Variant	Your Risk	Recommendations
Caffeine	CYP1A2, rs2472300	GA or AA	AA	Elevated	Limit caffeine consumption to 100 mg/day.
Glycaemic Index	TCF7L2, rs12255372	TT or GT	GT	Elevated	Consume most grain products as whole grains.
Sodium	ACE, rs4343	GA or AA	AA	Elevated	Limit sodium intake to 1500 mg/day.
Omega-3 Fat	NOS3, rs1799983	TT or GT	GG	Typical	Consume 200 to 500 mg per day of omega-3 fats. If you are pregnant, incorporate 150 g of cooked fish into
Saturated Fat	APOA2, rs5082	CC	TC	Typical	Limit intake of saturated fat to no more than 10% of energy.

Weight Management and Body Composition

Dietary/ Fitness Component	Gene, rs Number	Response Variant	Your Variant	Your Response	Recommendations
Energy Balance	UCP1, rs1800592	GG or GA	GA	Diminished	Aim for an energy deficit of 650 calories/day from your calculated energy needs for weight loss.
Physical Activity	FTO, rs9939609	AA	TA	Typical	Aim for 150 min/week of cardio and at least 2 days/week of muscle-strengthening activities.
Protein	FTO, rs9939609	AA	TA	Typical	Consume 20-30% of energy from protein.
Total Fat	TCF7L2, rs7903146	π	CC	Typical	Consume 20-35% of energy from fat.
Saturated and Unsaturated Fat	FTO, rs9939609	TA or AA	TA	Enhanced	Limit intake of saturated fat to no more than 10% of energy. Consume at least 5% of energy from polyunsaturated fat.
Monounsaturated Fat	PPARγ2, rs1801282	GG or GC	CC	Typical	Aim for a balance of saturated, monounsaturated and polyunsaturated fats to meet your total daily fat intake.

Food Intolerances

Dietary Component	Gene, rs Number	Risk Variant	Your Variant	Your Risk	Recommendations
Lactose	MCM6, rs4988235	CC or CT	CT	Slightly Elevated	Limit dairy intake.
	HLA, rs2395182	Algorithm	GT	Medium	
	HLA, rs7775228		ТТ		
01.14	HLA, rs2187668		СТ		Marking vials for all the circles are
Gluten	HLA, rs4639334		GG		Medium risk for gluten intolerance.
	HLA, rs7454108		П		
	HLA, rs4713586		AA		

Eating Habits

Componente Dietético	Gene, Número rs	Variante de Resposta/ Risco	Sua Variante	Sua Resposta/ Risco	Recomendação
Percepção do Sabor da Gordura	CD36, rs1761667	GG ou GA	AA	Typical	Your ability to sense the fatty taste of foods is typical.
Preferência por Açúcar	GLUT2, rs5400	CT ou TT	СТ	Elevated	You have a high preference for sugar.
Comer entre as Refeições	MC4R, rs17782313	CC ou CT	П	Typical	Your tendency to eat between meals is typical.
Digestão de Amido	AMY1, rs4244372	AA	AT	Typical	Your ability to metabolize starch is typical.

PAGE 2

Fitness and Physical Activity

Fitness Component	Gene , rs Number	Response/ Risk Variant	Your Variant	Your Response /Risk	Implications
Motivation to Exercise	BDNF, rs6265	AA or AG	AA	Enhanced	You have an enhanced innate motivation to exercise.
Exercise	CYP19A1, rs2470158	مر المراجع الم	GG	Turinal	You have a typical likelihood of engaging in
Behavior	LEPR, rs12405556	Algorithm	GT		physical activity.
Power and Strength	ACTN3, rs1815739	TC or CC	CC	Ultra	You have a genetic advantage to excel in power sports.
	ADRB3, rs4994		П	Typical	
Ford ware	NRF2, rs12594956		CA		Value and man an extended in the include
Endurance	GSTP1, rs1695	Algorithm	AG		rypicai Your endurance potentiai is typicai.
	NFIA-AS2, rs1572312		CC		
Pain	COMT, rs4680	GG or GA	GA	Enhanced	You have a heightened pain tolerance.
Achilles Tendon Injury	COL5A1, rs12722	CT or TT	CC	Typical	You have a typical risk for Achilles tendon injury.

The Science Behind Nutrigenomix

One man's food is another man's poison - Lucretius

Nearly 50 million couples worldwide experience infertility. Although the causes of infertility are often complicated and difficult to identify, health and lifestyle factors affect the ability of both men and women to reproduce. In women, older age, inability to produce ova (mature oocytes), and presence of endometriosis or polycystic ovarian syndrome (PCOS) can play a large role in infertility. Among men, sperm count and quality are variable and play an important role in successful fertilization. For both sexes, factors known to affect fertility include the viability of gametes (in women, oocytes, and in men, sperm), hormonal imbalances, presence of sexually transmitted infections (STI's), substance use, over- or under-weight, and past or present chronic disease. Clearly, many contributing factors must align for healthy fertilization and pregnancy to occur. One of these factors is nutrition. There is mounting evidence to support the relationship between various dietary components and fertility, but the effects of nutritional interventions on fertility remain unclear because of variations in response to those interventions across individuals.

The human genome consists of about 25,000 genes, and virtually all can exist in different forms. Genetic variation determines not only the color of our eyes and hair, but how we metabolize and utilize the foods, beverages and dietary supplements we consume. The science of nutrigenomics applies genomic information and advanced technologies to uncover the relationship between genes, nutrition and health. The term nutrigenomics refers to both the study of how the food, beverages and supplements we consume affect our genes, and how our genes can influence our body's response to what we ingest. This response can affect virtually all bodily functions, including reproduction.

Different versions of a gene can make us respond differently to certain components in food, such as the lactose in milk, the gluten in bread, the caffeine in coffee, the vitamin C in orange juice, the saturated fat in croissants, etc.. Through years of scientific research, we have learned that genetic variations between individuals affect a wide variety of responses to key components of our diet. For instance, some individuals may become more fertile by limiting their consumption of caffeine or increasing their intake of omega-3 fat, while others can follow the general recommendation for either or both. Your best diet for optimal fertility depends on the specific variants you have for these nutrient-related genes. Understanding your genetic profile and its implications on your unique response to the foods, supplements and beverages you consume will provide you with the tools needed to make the best dietary choices.

Nutrigenomics, the science of how specific genes change our responses to dietary components, can enable us to use nutrition to its fullest potential to optimize fertility. While general dietary recommendations might be prudent to follow, the one-size-fits-all approach to nutritional advice could limit some individuals from reaching their full fertility potential. By tailoring one's nutritional needs to their genetic profile, the benefits of nutrition on reproductive outcomes can be maximized.

Gene	Marker
BCMO1	rs11645428
Risk Variant	Your Variant
GG	GG

Your Risk

Elevated

Recommendation

Since you possess the GG variant of the BCMO1 gene, it is important for you to meet the RDA for vitamin A. Consuming foods that are higher in pre-formed vitamin A can help you to meet your needs more easily. These foods include fish, liver, eggs, and dairy products. Meeting your recommendations for vitamin A will help to support the production and health of oocvtes and sperm. It will also act as an antioxidant when consumed in the form of beta-carotene (plant-sources). Women who are not pregnant should aim for 700 mcg RAE/day, pregnant women 770 mcg RAE/day, and men 900 mcg RAE/day. Both women and men should consume less than 3,000 mcg RAE/day.

Focus on consuming pre-formed sources of vitamin A daily to meet the RDA. Do not exceed 3000 mcg RAE per day.

Vitamin A (Beta-Carotene)

Vitamin A is a fat-soluble vitamin important for healthy reproduction and immune function. Beta-carotene, an antioxidant found in certain fruits and vegetables that are red or orange in color, is a precursor of active vitamin A. Beta-carotene can be converted to pre-formed vitamin A (retinol) in the body to exert its biological functions. Pre-formed vitamin A, or retinol, can be found in animal sources such as fish, eggs and cheese. In men, vitamin A is essential for sperm development, or spermatogenesis, and due to its role in immune function, it preserves sperm quality. For women, sufficient consumption of vitamin A is important in egg (oocyte) maturation and embryonic development, and it may reduce time to conception*. However, once pregnant, high levels of vitamin A can be harmful to a developing fetus, especially during the time just after conception. It is especially important for pregnant women to ensure vitamin A intake does not exceed the tolerable upper intake level (UL) of 3,000 mcg RAE per day. Research shows that individuals with the GG version of the BCMO1 gene are inefficient at converting beta-carotene to active vitamin A**. These individuals are considered low responders to dietary beta-carotene, so consuming enough active vitamin A can help ensure circulating levels of active vitamin A are adequate to support reproductive and immune functions.

BCMO₁

Beta-carotene mono-oxygenase 1 (BCMO1) is an enzyme that plays a key role in the conversion of beta-carotene into the active form of vitamin A. Beta-carotene is the plant form of vitamin A. Individuals who possess the GG version of the BCMO1 gene are inefficient at converting beta-carotene into the active form of vitamin A. These individuals need to ensure they are consuming adequate amounts of vitamin A, particularly pre-formed vitamin A.

Sources of Vitamin A

	High in Preformed Vitamin A	Amount (mcg RAE)
Pumpkin, canned (1/2 cup)		1010
Carrots, cooked (1/2 cup)		650
Sweet potato, boiled without skin (1/2 medium)		600
Bluefin tuna (75g)	✓	530
Spinach, boiled (1/2 cup)		500
Butternut squash (1/2 cup)		410
Goat cheese, hard (50g)	✓	240
Eggs (2 large)	✓	220
Mackerel (75g)	✓	190
	Carrots, cooked (1/2 cup) Sweet potato, boiled without skin (1/2 medium) Bluefin tuna (75g) Spinach, boiled (1/2 cup) Butternut squash (1/2 cup) Goat cheese, hard (50g) Eggs (2 large)	Preformed Vitamin A Pumpkin, canned (1/2 cup) Carrots, cooked (1/2 cup) Sweet potato, boiled without skin (1/2 medium) Bluefin tuna (75g) Spinach, boiled (1/2 cup) Butternut squash (1/2 cup) Goat cheese, hard (50g) Eggs (2 large)

Source: Health Canada's Nutrient Value of Some Common Foods and Dietitians of Canada Food Sources of Vitamin A

Vitamin B₁₂

Vitamin B12 (cyanocobalamin) is important for DNA and RNA synthesis, and works together with folate to reduce levels of homocysteine in the blood. High levels of circulating homocysteine have been linked to reduced sperm motility and abnormal sperm morphology in men, and endometriosis and reduced follicle quality in women*. Vitamin B12 also keeps red blood cells healthy and helps to prevent megaloblastic anemia, which can negatively affect pregnancy. Research shows that some individuals are at a greater risk than others for vitamin B12 deficiency, based on the FUT2 gene**. Since animal products are the only sources of vitamin B12, individuals following a vegetarian or vegan diet are at an even greater risk of vitamin B12 deficiency.

FUT2

The fucosyltransferase 2 (FUT2) enzyme is encoded by the fucosyltransferase 2 gene and is involved in vitamin B₁₀ absorption and transport between cells. Variants of this gene have been linked to low blood levels of vitamin B₁₀ especially when consuming a vegetarian diet. However, for individuals with the risk variant, consuming adequate vitamin B₁₀ can help reduce the risk of vitamin B₁₀ deficiency.

Sources of Vitamin B₁₂

	_
	Amount (mcg)
Clams, boiled or steamed (5 large)	59.0
Oysters, boiled or steamed (6 medium)	14.7
Atlantic herring (75g)	14.0
Nutritional yeast (1 Tbsp)	3.9
Ground beef, lean (75g)	2.2
Fortified soy beverage (1 cup)	2.2
Atlantic salmon (75g)	2.1
Lamb (75g)	1.7
Soy 'burger' patty (1)	1.7
Eggs, hard boiled (2)	1.1

Source: Health Canada's Nutrient Value of Some Common Foods and http://nutritiondata

Your Results

Gene	Marker
FUT2	rs601338
Risk Variant	Your Variant
GG or GA	GA

Your Risk

Elevated

Recommendation

Since you possess an elevated risk variant for vitamin B12 deficiency, you should aim to meet the RDA for vitamin B12 of 2.4 mcg daily (for pregnant women, 2.6 mcg daily), to maintain healthy homocysteine levels and promote adequate gamete development and red blood cell production. You should focus on eating foods with a high bioavailability of vitamin B12 (foods with a form of vitamin B12 that your body uses more effectively), such as meat and fish. Foods fortified with B12 include soy products, vegetarian meat alternatives, or fortified milk alternatives, such as soy, almond and rice beverages. If you follow a vegetarian or vegan diet, you are at an even greater risk for vitamin B12 deficiency and, depending on your food choices, a supplement may be warranted.

Focus on meeting the RDA from bioavailable vitamin B12 sources.

NUTRIENT METABOLISM | PAGE 6 NUTRIENT METABOLISM | PAGE 7

^{*} Ruder E, Hartman T, Reindollar R, Goldman M. Female dietary antioxidant intake and time to pregnancy among couples treated for unexplained infertility. Fertility and Sterility. 2014;101(3):759-766.

** Lietz G et al. Single nucleotide polymorphisms upstream from the "-carotten 15,15"-monoxygenase gene influence provitamin A conversion efficiency in female volunteers. Journal of Nutrition. 2012;142:1618-55.

^{*} Ebisch IMW et al. Homocysteine, glutathione and related thiols affect fertility parameters in the (sub)fertile couple. Hum. Reprod. (2006) 21 (7): 1725-1733.

**Hazra A et al. Common variants of FUT2 are associated with plasma vitamin B12 levels. Nature Genetics. 2008

Gene Marker GSTT1 Ins or Del Risk Variant Your Variant Del Ins

Your Risk

Typical

Recommendation

Since you possess the Ins variant of GSTT1, there is no increased risk of vitamin C deficiency. Therefore, following the RDA guidelines for vitamin C is sufficient for you. The RDA for vitamin C is 75 mg per day for women who are not pregnant (85 mg per day for pregnant women), and 90 mg per day for men. Smokers require an additional 35 mg per day. Vitamin C can also be taken in supplement form and is found in most multivitamins and prenatal vitamins. However, consuming vitamin C from natural food sources is preferable.

Meet the RDA for vitamin C daily.

Vitamin C

Vitamin C is a powerful antioxidant. Antioxidants play a key role in reproduction. Both sperm and oocytes are vulnerable to oxidative stress. Therefore, gonads require antioxidants for optimal fertility. In fact, as much as 10 times the amount of vitamin C is present in semen and follicular fluid as in the remainder of the body*. In women, higher intake of vitamin C may reduce time to establish pregnancy**. Vitamin C also aids in the absorption of non-heme (plant) iron and supports immune function, both of which are required for healthy reproductive function. Research has shown that the amount of vitamin C absorbed into the blood can differ between people, even when the same quantity is consumed. Some people do not process vitamin C from the diet as efficiently as others, and they are at a greater risk of vitamin C deficiency. Research*** shows that the ability to process vitamin C efficiently depends on a gene called GSTT1.

The GSTT1 gene produces a protein for the glutathione S-transferase enzyme family. These enzymes play a key role in the utilization of vitamin C. The GSTT1 gene can exist in one of two forms. The insertion ("Ins") form is considered functional while the deletion ("Del") form is not functional. The different versions of this gene interact to influence the way vitamin C is utilized in the body. A deletion version of the gene results in a reduced ability to process vitamin C. This means that people who possess the deletion version (Del) will have lower blood levels of vitamin C at a given level of intake than people who possess the insertion version (Ins) of the gene.

Sources of Vitamin C

	Amount (mg)
Red peppers (1 pepper)	216
Strawberries (1 cup)	96
Pineapple (1 cup)	92
Brussels sprouts (1 cup)	90
Orange juice (1 cup)	86
Broccoli (1 cup)	82
Grapefruit (1 fruit)	78
Mango (1 fruit)	75
Kiwi (1 fruit)	70

Source: TACO (UNICAMP), Canadian Nutrient File and USDA Nutrient Database

Vitamin D

Vitamin D can be synthesized by the skin from UV light or it can be obtained from the diet, and it plays an important role in fertility and reproduction. Vitamin D is essential for calcium metabolism and absorption, which is required for fertilization as described in the Calcium section of this report. Higher levels of vitamin D have been linked to higher in vitro fertilization (IVF) success rates and contribute to a healthy immune system and reduced risk for endometriosis, both of which impact embryo implantation in the endometrium. Vitamin D deficiency has been linked to higher risk of spontaneous abortion during the first trimester*. In men, vitamin D promotes sperm motility and viability**. Low blood levels of vitamin D can negatively impact immune function and, in turn, fertility. Vitamin D deficiency is diagnosed by measuring the most common form of vitamin D in the blood, which is 25-hydroxyvitamin D. Research shows that variations in the CYP2R1 and GC genes can affect your risk for low circulating 25-hydroxyvitamin D levels***.

CYP2R1 & GC

Vitamin D 25-hydroxylase is the key enzyme that activates vitamin D from its pre-formed type, which is obtained through sun exposure and the diet. This enzyme is encoded by the CYP2R1 gene and a variant of this gene has been associated with an increased risk of low circulating levels of vitamin D. The GC gene encodes the vitamin D-binding protein, which binds vitamin D and transports it to a variety of tissues, including the endometrium and testes. A variant in this gene has also been associated with an increased risk of low circulating levels of vitamin D.

Sources of Vitamin D

	Amount (IU)
Sockeye salmon (75g)	680
Whitefish (75g)	448
Sardines, canned in oil (1/2 can)	254
Rainbow trout (75g)	192
Smoked salmon (40g)	168
Halibut (75g)	144
Fortified soy beverage (1 cup)	124
Arctic char (75g)	112
Milk (1 cup)	104
Orange juice, fortified with vitamin D (1/2 cup)	50

Source: Health Canada's Nutrient Value of Some Common Foods and Canadian Nutrient

Your Results

Genes CYP2R1 GC

rs10741657 rs2282679

Markers

Risk Variants

algorithm

Your Variants GΑ

GG

Your Risk

Elevated

Recommendation

Since you possess one or more elevated risk variants, you are at an increased risk for low circulating vitamin D levels, so getting enough vitamin D is important. Aim for 1000 IU (25 mcg) vitamin D per day. This can help to maintain and/or improve your likelihood of conceiving by enhancing calcium absorption and metabolism, immune function, and sperm or oocyte viability. Since it may be challenging to get enough vitamin D in the diet, supplementation may be beneficial. Do not exceed 2000 IU (50 mcg) per day without first having your blood levels of vitamin D assessed and monitored by a healthcare professional.

> Consume 1000 IU (25 mcg) vitamin D daily.

NUTRIENT METABOLISM | PAGE 8 NUTRIENT METABOLISM | PAGE 9

^{*} Agarwal A et al. The role of antioxidant therapy in the treatment of male infertility. Human Fertility. 2010;13(4):217-225.

^{**}Ruder E, Hartman T, Reindollar R, Goldman M. Female dietary antioxidant intake and time to pregnancy among couples treated for unexplained infertility. Fertility and Sterility. 2014;101(3):759-766.

^{**} Cahill LE et al. Functional genetic variants of glutathione S-transferase protect against serum ascorbic acid deficiency. American Journal of Clinical Nutrition, 2009:90:1411-7

^{*} Hou W, Yan X, Bai C, Zhang X, Hui L, Yu X. Decreased serum vitamin D levels in early spontaneous pregnancy loss. European Journal of Clinical Nutrition. 2016;70(9):1004-1008.

**Blomberg Jensen M et al. Vitamin D is positively associated with sperm motility and increases intracellular calcium in human spermatozoa. Human Reproduction. 2011;26(6):1307-1317.

^{*} Wang TJ et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study

Gene	Marker	
F5	rs6025	
Risk Variant	Your Variant	
CT or TT	CC	

Your Risk

Typical

Recommendation

Since you possess the typical risk variant of the F5 gene, you would not benefit from taking a vitamin E supplement to maintain adequate levels of vitamin E for enhanced antioxidant activity and lower risk of VTE. Meet the RDA for vitamin E of 15 mg/day (21 IU/day). Foods rich in vitamin E include almonds, sunflower seeds, sunflower oil, hazelnuts, and grapeseed oil.

Meet the RDA for vitamin E daily.

Vitamin E

Vitamin E is a fat-soluble antioxidant essential in protecting sperm and oocytes from oxidative stress. Antioxidant availability in gonads may predict the length of an individual's fertility span, the viability of sperm and oocytes, and the potential for healthy fertilization and embryo implantation to occur. Most vegetable oils, such as grapeseed oil, sunflower oil, canola oil, and flaxseed oil, as well as nuts and seeds, are excellent sources of vitamin E. While vitamin E deficiencies are rare, research has shown that some individuals might benefit from higher intakes of vitamin E for the prevention of venous thromboembolism (VTE). VTE consists of deep vein thrombosis (DVT) (blood clots, usually in the legs) and pulmonary embolism (blood clots that travel to the lungs from other parts of the body). VTE blood clots can pose a significant health risk to pregnant women, and women using hormonal contraception or hormone replacement therapy*. The risk of VTE is dependent, in part, on variations in the F5 gene, but research shows this risk is reduced in those who take a vitamin E supplement**.

*Eichinger S, Evers J, Glasier A, La Vecchia C, Martinelli I, Skouby S et al. Venous thromboembolism in women: a specific reproductive health risk. Human Reproduction Update. 2013;19(5):471-482.

**Glynn RJ et al. Effects of random allocation to vitamin E supplementation on the occurrence of venous thromboembolism. en's Health Study, Circulation, 2007;116;1497-503

F5

The F5 gene helps to produce a protein called coagulation factor 5. Coagulation factors are involved in the formation of blood clots. Blood clotting can be beneficial for stopping bleeding and sealing off blood vessels in a wound or scrape. However, more serious blood clots can occur in cases such as VTE where the clot occurs in a vein and obstructs the flow of blood. These clots can travel to the lungs resulting in pulmonary embolism. Variations in the F5 gene have been associated with an increased risk of VTE.

Sources of Vitamin E

	Amount (mg)
Almonds (1/4 cup)	9.3
Sunflower seeds, roasted (1/4 cup)	8.5
Sunflower oil (1 Tbsp)	5.7
Hazelnuts, dry roasted (1/4 cup)	5.2
Grapeseed oil (1 Tbsp)	4.0
Peanut butter (2 Tbsp)	2.9
Peanuts, dry roasted (1/4 cup)	2.6
Flaxseed oil (1Tbsp)	2.4
Canola oil (1 Tbsp)	2.4
Halibut (75g)	2.2
Eggs, hard boiled (2 large)	1.0

Source: Health Canada's Nutrient Value of Some Common Foods

Folate

Folate is a water-soluble B vitamin necessary for cell growth and development, which are essential for embryonic development. Although folate helps prevent neural tube defects (NTD) in the developing fetus, it is also needed for maintenance of healthy homocysteine levels. High homocysteine in both males and females is associated with reduced fertility. Adequate folate enhances sperm's fertilizing capability, and thus promotes the development of higher quality embryos*. The amount of folate absorbed into the blood can differ between individuals, even when the same quantity is consumed. Some people do not utilize dietary folate as efficiently as others, and they are consequently at a greater risk of folate deficiency. Research** shows that an individual's ability to process dietary folate efficiently depends on a gene called MTHFR. Health Canada recommends all women of child-bearing age take a daily multivitamin containing 400 mcg of folic acid. Consult with your healthcare practitioner to help you choose an appropriate multivitamin for you.

MTHFR

The MTHFR gene produces methylenetetrahydrofolate reductase (MTHFR), which is a vital enzyme for folate usage in the body. MTHFR converts folate obtained from the diet to an active form of the nutrient that can be used by the body at the cellular level, often to help metabolize and reduce levels of homocysteine. Variations in the MTHFR gene determine the way individuals can utilize dietary folate. Those people who have the CT or TT variant of the gene have reduced MTHFR enzyme activity and are at greater risk of folate deficiency when folate intake is low, compared to those with the CC variant.

Sources of Folate

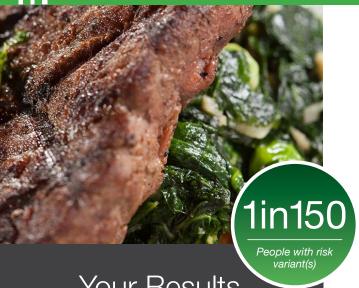
		Amount (mcg)
	Chicken liver (75mg)	420
	Edamame (soybeans) (1/2 cup)	382
	Lentils, cooked (3/4 cup)	265
	Spinach, cooked (1/2 cup)	130
	Asparagus (6 spears)	128
	Chickpeas (3/4 cup)	119
	Black beans (1/4 cup)	108
	Kale, raw (1 cup)	100
	Avocado (1/2 fruit)	81

Source: Canadian Nutrient File and USDA Nutrient Database

Your Results

Gene	Marker
MTHFR	rs1801133
Risk Variant	Your Variant
CT or TT	П

Your Risk


Recommendation

Since you possess the TT or CT variant of the MTHFR gene, you have a greater risk of folate deficiency if you do not meet the RDA on a daily basis. Ensure that folate intake is at least 400 mcg per day (600 mcg per day for pregnant women) to reduce the risk of deficiency and neural tube defects in the developing fetus (for women). Health Canada also recommends all women of child-bearing age take a daily multivitamin containing 400 mcg of folic acid, which is the synthetic form of folate used in supplements. Enriched and fortified products, such as ready-to-eat cereals and bread products, are also good sources of folic acid.

> Meet the RDA for folate daily. If you are pregnant, consume a 400 mcg folic acid supplement daily.

^{*} Boxmeer JC et al. IVF outcomes are associated with biomarkers of the homocysteine pathway in monofollicular fluid. Hum Reprod. 2009 May; 24(5):1059-66.
** Guinotte CL et al. Methylenetetrahydrofolate Reductase 677C T Variant Modulates Folate Status Response to

Controlled Folate Intakes in Young Women, Journal of Nutrition, 2003:133:1272-1280

Genes	Markers
SLC17A1 HFE HFE	rs17342717 rs1800562 rs1799945
Risk Variants	Your Variants
algorithm	CC GG CC

Your Risk

Low

Recommendation

Since you do not possess any risk variants for iron overload, you have a low risk for iron overload. Follow the recommendations given in the next section for Low Iron Status. Aim to consume the RDA for iron, which is 8 mg/day for men and 18 mg/day for nonpregnant women who are 19-50 years old. Pregnant women are advised to consume an iron supplement containing 16-20 mg each day in addition to iron-rich foods to achieve an RDA of 27 mg/day, either alone or as part of a prenatal (multi) vitamin.

Follow the recommendations provided in the Low Iron Status section.

Iron Overload

Hemochromatosis is a condition where the body absorbs too much iron (i.e. iron "overload"), and can result in iron toxicity to the anterior pituitary. This condition is associated with decreased production of key reproductive hormones, which can impair sperm and oocyte generation. Iron overload can also damage reproductive tissues directly and affect their normal function. High circulating iron can also contribute to oxidative stress in the body, which damages sperm in men and promotes follicular aging in women*. If you have a high risk for iron overload, it is important to monitor your iron intake and blood markers of iron status such as ferritin, hepcidin or transferrin saturation. There are two main types of dietary iron: heme and non-heme iron. Non-heme iron is found in certain plant products and is not absorbed as effectively as heme iron, but vitamin C can substantially increase the absorption of non-heme iron. Hereditary hemochromatosis is an iron overload condition linked to variations in the HFE or SLC17A1 genes**. It is important for both women and men to follow the appropriate RDA for iron, but consume less than the tolerable upper intake level (UL), which is 45 mg/day.

*Singer S et al. Reproductive capacity in iron overloaded women with thalassemia major. Blood. 2011;118(10):2878-2881
** Allen KJ et al. Iron-overload-related disease in HFE hereditary hemochromatosis. New England Journal of Medicine.

HFE and SLC17A1

The human hemochromatosis protein is encoded by the HFE gene and variations in the gene sequence have been linked to iron overload. The SLC17A1 gene is located near the HFE gene and variations in SLC17A1 have also been linked to iron overload. The HFE protein functions to regulate iron uptake in the small intestine. Those with elevated risk variants need to be careful not to consume too much iron and should have their blood markers of iron monitored. This test detects approximately 95% of cases of iron overload.

Sources of Iron

Sources of Heme Iron	Sources of Non-Heme Iron
Beef	Almonds
Chicken	Chickpeas
Fish	Parsley
Organ meats	Spinach
Shrimp	Tofu
Veal	White beans

Low Iron Status

Iron is required for embryonic development. Low iron stores in women are associated with a reduced ability to conceive. In men, iron is an important component of semen that supports healthy sperm function. During pregnancy, iron is essential to support placental and fetal brain development, as well as establish iron stores for the baby's first six months of life. Low iron stores can lead to anemia, which is associated with fatigue, pale skin, weakness, shortness of breath and dizziness. Low iron stores can also lead to anemia, which is associated with fatigue, pale skin, and weakness. During pregnancy, low iron stores can lead to increased risk of complications. Several genes can impact the risk of having low iron status, including TMPRSS6, TFR2, and TF*.

*Pichler I et al. Identification of a common variant in the TFR2 gene implicated in the physiological regulation of serum iron levels. Human Molecular Genetics. 2011;15:1232-40.

Benyamin B et al. Variants in TF and HFE explain approximately 40% of genetic variation in serum-transferrin levels. Am J Hum Gen. 2009;84:60-65.

TMPRSS6, TFR2, and TF

The TMPRSS6 gene codes for the protein matriptase-2, which affects hepcidin levels that help to regulate iron balance. The transferrin receptor 2 (TFR2) gene codes for the TFR2 protein, which helps iron to enter into cells. The transferrin (TF) gene codes for the protein transferrin, which is mainly responsible for transferring iron in the body. Together, variations in these genes can impact the risk of low iron status.

Sources of Iron

	Amount (mg)
Chicken liver (75mg)	9.8
White beans (175ml)	5.8
Pumpkin seeds (2 Tbsp)	5.2
Spinach, boiled (1/2 cup)	3.4
Tahini (2 Tbsp)	2.7
Chickpeas (3/4 cup)	2.4
Extra lean ground beef (75g)	2.1
Almonds (1/4 cup)	1.5
Tofu (150g)	1.2
Lean ground chicken (75g)	1.2

Source: Health Canada's Nutrient Value of Some Common Foods

Your Results

Genes	Markers
TFR2	rs4820268 rs7385804 rs3811647

Risk Variants Your Variants

GΑ CA algorithm AA

Your Risk

Elevated

Recommendation

You are at an increased risk for low iron status. To minimize your risk for low iron, meet the RDA for iron and consume food sources of vitamin C with non-heme iron-containing foods to increase iron absorption. Focus on foods with a high bioavailability, such as animal products (heme iron) and cooked spinach. Men aged 19 years and older should aim for 8 mg/day. Women 19-50 years old who are not pregnant should aim for 18 mg/ day. Pregnant women are advised to consume an iron supplement containing 16-20 mg/day, either alone or as part of a prenatal (multi) vitamin, in addition to iron-rich foods to achieve an RDA of 27 mg/day.

> Meet the RDA for iron daily and consume sources of vitamin C with iron-rich foods. If you are pregnant, consume a 16-20 mg iron supplement each day.

NUTRIENT METABOLISM | PAGE 12 NUTRIENT METABOLISM | PAGE 13

Gene	Markers
GC	rs7041 rs4588
Risk Variants	Your Variants
algorithm	TG CA

Your Risk

Elevated

only when calcium intake is low

Recommendation

Based on your GC gene variant, you have an increased risk for poor bone health if your intake is below 1200 mg per day. Meeting these recommendations will bring your elevated risk down to typical, and help support fertility. Adults 19-50 years old should not exceed 2500 mg calcium per day. Aim to meet your recommended daily intake of calcium through dietary sources.

Consume 1200mg of calcium daily.

Calcium

Calcium plays a key role in bone metabolism, which is linked to reproductive physiology in men*. In women, calcium is crucial for the development of the fetal skeleton during pregnancy. In addition, calcium is involved in synthesizing estrogen, a key reproductive hormone in women, and maintaining adequate estrogen levels in the blood, which are associated with reduced risk for endometriosis. To absorb calcium, we need an adequate vitamin D status. Refer to the Vitamin D section for your specific recommendations. Research shows that some people do not utilize dietary calcium as efficiently as others, and this may depend on variations in the GC gene**.

GC

The GC gene encodes the vitamin D-binding protein, which transports vitamin D throughout the body. Since vitamin D is needed for the absorption of calcium, this binding protein can impact calcium levels in the body and, therefore, may be linked to fertility. Research shows that two variations in the GC gene are associated with increased risk of poor bone health, which can impact reproductive potential when calcium intake is low.

Sources of Calcium

	Amount (mg)
Low-fat cheddar cheese (50g)	450
Yogurt, plain (3/4 cup)	330
Skim milk (1 cup)	325
Fortified soy or rice beverage (1 cup)	320
Tofu, firm (150g)	235
Canned salmon, with bones (75g)	210
Sardines, canned in oil (1/2 can)	200
Kefir, plain (3/4 cup)	185
Edamame (soybeans) (1/2 cup)	130
Spinach, boiled (1/2 cup)	130

Source: Health Canada's Nutrient Value of Some Common Foods

Caffeine

Caffeine is the most widely consumed stimulant in the world, and coffee is one the most significant sources of caffeine. Studies have shown a link between caffeine and fertility, with high coffee consumption being associated with an elevated risk of sub-optimal sperm motility, delayed conception, infertility, insulin resistance and hyperglycemia leading to pre-diabetes, and poor assisted reproductive therapy outcomes*. Research** shows that an individual's caffeine metabolizing capability associated with coffee consumption impacts risk of pre-diabetes and hypertension, and depends on a variation in a gene called CYP1A2.

*Minelli A, Bellezza I. Methylxanthines and reproduction. Handb Exp Pharmacol. 2011;200:349-72.

**Palatini, P. et al. (2015). Association of coffee consumption and CYP1A2 polymorphism with risk of impaired fasting glucose in hypertensive patients. European Journal of Epidemiology, 30(3), pp.209-217.

Palatini, P., et al. (2009). CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. Journal of Hypertension. 27(8). pp. 1594-1601.

CYP1A2

The CYP1A2 gene produces an enzyme called cytochrome P450 1A2 (CYP1A2), which is the main enzyme responsible for breaking down caffeine in the body. Variations in the CYP1A2 gene affect the rate at which caffeine is broken down. Individuals who possess the GA or AA variant of CYP1A2 break down caffeine more slowly. This may affect the way that caffeine affects reproductive functions and fertility, in comparison to individuals who possess the GG variant of the CYP1A2 gene and process caffeine faster.

Sources of Caffeine

	Amount (mg)
Coffee (1 cup)	100
Energy drinks (1cup)	80
Espresso (1 shot)	85
Black tea (1 cup)	50
Green tea (1 cup)	45
Cola (1 can)	26
Chocolate, dark (40 g)	27
Decaf coffee, espresso, tea (1 cup)	0-15
Herbal tea (1 cup)	0

Source: Canadian Nutrient File and USDA Nutrient Database

Your Results

Gene	Marker
CYP1A2	rs2472300
Risk Variant	Your Variant

GA or AA

Your Risk

Recommendation

Since you possess the AA or GA variant of the CYP1A2 gene, you are considered a slow metabolizer of caffeine. Therefore, excessive caffeine consumption may incur hypertension or pre-diabetes, which can cause complications during pregnancy. Limit caffeine intake to 100 mg/day. Caffeine occurs naturally in coffee, tea, cocoa, kola and guarana. It is also manufactured synthetically and added to cola, energy drinks, and certain over the counter cold remedies.

Limit caffeine consumption to 100 mg/day.

^{*} Karsenty, G. and Oury, F. Regulation of male fertility by the bone-derived hormone osteocalcin. Molecular and Cellular Endocrinology, 2014;382(1):521-526.

** Fang Y et al. Vitamin D binding protein genotype and osteoporosis. Calcif Tissue Int. 2009;85:85-93.

Gene	Marker
TCF7L2	rs12255372
Risk Variant	Your Variant
GT or TT	GT

Your Risk

Elevated

Recommendation

Since you possess the GT or TT variant of the TCF7L2 gene, there is an increased risk of developing type 2 diabetes if your whole grain consumption is low, which may result in reduced fertility. Replacing high glycemic index carbohydrates in the diet with low glycemic index carbohydrates may help to reduce this risk. Reduce consumption of carbohydrates such as white bread, bagels, potatoes, and short-grain white rice. Opt instead for whole grains, which have a low glycemic index. Cereal grains that can be found whole include wheat, rice, oats, barley, corn, wild rice, rye, quinoa and buckwheat.

Consume most grain products as whole grains.

Whole Grains

Whole grains are a low glycemic index carbohydrate containing more fibre than refined grains. They also contain more essential micronutrients such as folate, magnesium and vitamin E. Higher whole grain consumption in women undergoing IVF is associated with successful pregnancy outcomes*. Research shows that whole grains may help reduce the risk of several chronic diseases, such as type 2 diabetes. Manifestations of type 2 diabetes, including insulin resistance and hyperglycemia, are associated with reduced fertility. In women, PCOS is closely linked to the development of type 2 diabetes and these conditions often coexist and greatly affect a woman's fertile potential. For men, type 2 diabetes can have endocrine effects, negatively affecting sperm development and maturation, as well as steroid generation**. Research shows that variation in the TCF7L2 gene can affect the risk of developing type 2 diabetes, and some individuals might benefit more from increasing their whole grain consumption***.

TCF7L2

The TCF7L2 gene produces a protein called transcription factor-7 like 2 (TCF7L2). This protein, in turn, affects how the body turns on or off a number of other genes. The interaction of these proteins and genes is complex, and not yet fully understood. However, the TCF7L2 gene is one of the most consistent predictors of the likelihood of developing type 2 diabetes. People who possess the high risk GT or TT variant of the gene are at greater risk of developing type 2 diabetes. Yet, recent studies have shown that consuming whole grain foods can reduce the risk of type 2 diabetes in individuals who carry the GT or TT variant of the TCF7L2 gene.

Replace these foods	with these foods
white bread, bagels, pitas	100% whole grain bread, bagels and pitas
White rice	Brown or wild rice, quinoa
White pasta	100% whole wheat pasta or brown rice pasta
High sugar cold cereals	Cooked oatmeal or 100% whole grain cold cereal
White flour baked goods	100% whole wheat flour baked goods

Sodium

Sodium is an essential micronutrient that regulates blood pressure and blood volume. However, most people consume more sodium than the body requires. The major adverse effect of excess sodium intake is elevated blood pressure, which predisposes to hypertension and heart disease. Hypertension can have a negative effect on semen quality in men*. In women, hypertension prior to and during pregnancy increases the risk of many serious complications for the developing fetus, as well as the mother herself. However, some individuals do not experience as great an increase in blood pressure in response to excess sodium intake as others. Research** shows that the effect of sodium intake on blood pressure is influenced by variations in a gene called ACE.

ACE

The ACE gene directs the body to produce the angiotensin-converting enzyme (ACE), which is known to play a role in regulating the response of blood pressure to sodium intake. It is now known that a person's specific blood pressure response to excess sodium intake is dependent on which variant of the ACE gene they possess. Those who have the GA or AA variant of the ACE gene are at a greater risk of experiencing elevated blood pressure when higher amounts of sodium are consumed than those possessing the GG variant of the gene.

Sources of Sodium

	Amount (mg)
Ramen noodles, with flavour (1 package)	1760
Breakfast bagel w/ham, egg and cheese	1260
Canned soup (1 cup)	1130
Ham (75g)	1040
Pickle (1 medium)	830
Tomato sauce, canned (1/2 cup)	650
Feta cheese (50g)	560
Potato chips (1 small bag)	390
Cold cereal (1 cup)	350
Bread (1 slice)	230

Source: Canadian Nutrient File and USDA Nutrient Database

Gene	Marker
ACE	rs4343
Risk Variant	Your Variant
GA or AA	AA

Your Risk

Elevated

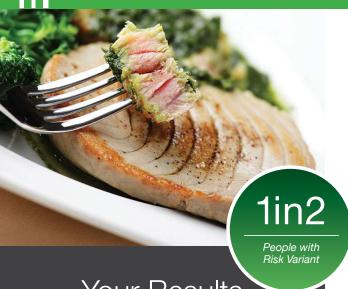
Recommendation

Since you possess the AA or GA variant of the ACE gene, you have an increased risk of elevated blood pressure, with its associated fertility complications, when your sodium intake is high. Limiting sodium consumption to the Adequate Intake (AI) level of 1500 mg per day should help to reduce the risk. The Al is equivalent to 3/4 teaspoon of salt per day, which includes sodium found naturally in food as well as salt added during processing and preparation.

> Limit sodium intake to 1500 mg/day.

^{*} Gaskins A, Chiu Y, Williams P, Keller M, Toth T, Hauser R et al. Maternal whole grain intake and outcomes of in vitro fertilization. Fertility and Sterility. 2016;105(6):1503-1510.e4.

** Jangir R et al. Diabetes Mellitus Induced Impairment of Male Reproductive Functions: A Review. Current Diabetes


Reviews 2014:10(3):147-157

Livishits A et al. Fertility issues in women with diabetes. Women's Health. 2009;5(6):701-707.

*** Cornelis MC et al. TCF7L2, dietary carbohydrate, and risk of type 2 diabetes in US women. American Journal of

^{*} Eisenberg M et al. Relationship between physical occupational exposures and health on semen quality: data from the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertility and Sterility. 2015;103(5):1271-1277.

** Poch E et al. Molecular basis of salt sensitivity in human hypertension: Evaluation of renin-angiotensin-aldosterone system gene polymorphisms. Hypertension. 2001;38:1204-9.

Gene	Marker
NOS3	rs1799983
Risk Variant	Your Variant
GT or TT	GG

Your Risk

Typical

Recommendation

Since you possess the GG variant of the NOS3 gene, there is no benefit to increasing omega-3 intake in order to lower serum triglyceride levels. You should, therefore, follow the recommendation to consume 200-500 mg daily in order to optimize reproductive health. If you are pregnant, you are advised to consume 150 g of cooked, low mercury-containing fish per week to increase omega-3 fat intake. Many fatty fish are good sources of omega-3. Good plant food sources include flaxseed, walnuts, and canola and soybean oils. Omega-3 fat could also be consumed in supplement form as liquid or capsules.

Consume 200 to 500 mg per day of omega-3 fats. If you are pregnant, incorporate 150 g of cooked fish into your weekly diet.

Omega-3 Fat

Omega-3 fats, such as those found in fatty fish, are associated with improved fertility because they improve the structural composition and morphology of sperm and oocytes, which may increase fertilization potential. In addition, omega-3 fats can lower blood levels of triglycerides, and levels of triglycerides and omega-3 fats in the blood affect production of sperm and oocytes*. Previous studies have produced mixed results relating to the effects of omega-3 fat on triglyceride levels between individuals. Some people experience a significant reduction in triglyceride levels in response to increasing omega-3 fat intake, whereas others experience little benefit. Research shows that the effect of omega-3 fat on triglyceride levels depends on variations in a gene called NOS3**.

NOS3

The NOS3 gene directs the production of an enzyme called nitric oxide synthase. This enzyme is responsible for making nitric oxide, which plays an important role in the function of cells that line our blood vessels. Current research shows that variations in the NOS3 gene interact with omega-3 fat in different ways to impact how the body processes triglycerides. Those who have the GT or TT variant of the gene are at greater risk of elevated triglyceride levels when consuming a diet low in omega-3 fats, compared to those who have the GG variant.

Sources of Omega-3 Fat*

	Amount (g)
Salmon (75g)	1.6
Herring (75g)	1.5
Anchovy (75g)	1.3
Mackarel (75g)	0.9
Trout (75g)	0.7
Tuna, white (75g)	0.6
Lobster (75g)	0.4
Crab (75g)	0.3
Tuna, light (75g)	0.2

^{*} Long chain omega-3s EPA + DHA Source: Canadian Nutrient File and USDA Nutrient Database

Saturated Fat

Certain saturated fats, such as those found in red meat and baked goods, are associated with health conditions such as diabetes, cardiovascular disease and obesity. Saturated fat consumption may also negatively affect fertility. In men, higher intakes of saturated fat are associated with lower sperm count and impaired sperm motility*. In women, the ability to produce viable oocytes for fertilization is associated with dietary intake of saturated fat**. Saturated fat intake also may affect one's risk of obesity, which is a known risk factor for infertility. Research shows that the effect of saturated fat on obesity can be influenced by variations in a gene called APOA2***.

*Jensen, TK et al. High Dietary Intake Of Saturated Fat Is Associated With Reduced Semen Quality Among 701 Young Danish Men From The General Population. American Journal of Clinical Nutrition. 2012; 97.2: 411-418.

**Shaaker M et al. Fatty Acid Composition of Human Follicular Fluid Phospholipids and Fertilization Rate in Assisted Reproductive Techniques. Iranian Biomedical Journal. 2012; 16 (3): 162-168.

***Corella D et al. APOA2, dietary fat, and body mass index: replication of a gene- diet interaction in 3 independent popula-

APOA2

The APOA2 gene directs the body to produce a specific protein called apolipoprotein A-II, which plays an important role in the body's ability to utilize different kinds of fat. Scientists now understand that there are different variations in the APOA2 gene present in the human population and that these different versions of the gene interact with saturated fat in unique ways to influence energy balance and ultimately the risk of obesity and reproductive complications. Those people who have the CC variant of the gene are at a higher risk of developing obesity when consuming a diet high in saturated fats, which may in turn disrupt reproductive function, than those possessing the TT or TC variant of the gene.

Sources of Saturated Fat

	Amount (g)
Short ribs (75g)	11
Cheddar cheese (50g)	10
Ice cream, premium (1/2 cup)	11
Butter (1 tbsp)	8
Salami (75g)	8
Regular ground beef, cooked (75g)	7
Cheeseburger (single patty)	6
Muffin (1 small)	5
French fries (20-25 fries)	5
Coffee cream, 18% MF (1 tbsp)	2

Source: Canadian Nutrient File and USDA Nutrient Database

Your	Results
0	NA. L.

	1110110
APOA2	rs5082
Risk Variant	Your Variant
CC	TC

Your Risk

Typical

Recommendation

Since you possess the TT or TC variant of the APOA2 gene, you have no increased risk of obesity, and associated risk of infertility, when following a diet high in saturated fat. However, you should still limit saturated fat intake to less than 10% of total energy intake, as recommended by Health Canada, in order to reduce the general risk of other associated health issues such as cardiovascular disease. Suitable choices low in saturated fat include olive and vegetable oils, lean meats, low-fat dairy products, fish, and plant protein sources such as beans, lentils, nuts/seeds or soy-based proteins such as soy beverages and tofu.

Limit intake of saturated fat to no more than 10% of energy.

^{*} Hammiche F et al. Increased preconception omega-3 polyunsaturated fatty acid intake improves embryo morpholog Fertility and Sterility. 2011;95(5):1820-1823.

^{**} Ferguson J et al. NOS3 gene polymorphisms are associated with risk markers of cardiovascular disease, and interact with omega-3 polyunsaturated fatty acids. Atherosclerosis. 2010;211:539-544.

Gene	Marker
UCP1	rs1800592
Response Variant	Your Variant
GG or GA	GA

Your Response

Diminished

Recommendation

Since you possess the GG or GA variant of the UCP1 gene, your daily RMR may be approximately 150 calories (about 10%) lower than those with the typical risk variants. If you are trying to lose weight, reducing your energy intake from food or increasing your energy output through physical activity by approximately 650 calories per day from your calculated energy needs can be helpful. For example, decreasing your energy consumed by 450 calories and increasing your energy output through physical activity by 200 calories per day is equal to a 650 calorie deficit.

Aim for an energy deficit of 650 calories/day from your calculated energy needs for weight loss.

Energy Balance

Total energy output, the amount of energy a person burns daily, is the sum of resting metabolic rate (RMR) plus energy burned during physical activity. RMR is the energy burned during essential processes such as digestion, breathing, brain function and maintaining a normal body temperature. RMR can vary substantially between individuals based on differences in muscle mass, weight, age and genetics. In general, consuming less energy and/or expending more energy can help prevent overweight and obesity, which are associated with lower reproductive potential. Indeed, research shows that individuals who experience weight loss improve reproductive prognoses*. However, individuals with a lower RMR may have greater difficulty losing weight than those with a typical RMR. Variation in the UCP1 gene has been linked to a diminished RMR**. It is important to note that appropriate weight gain throughout pregnancy is necessary to support both maternal and infant health. The amount of healthy weight to gain during gestation depends on a mother's weight prior to pregnancy. Your doctor can help you determine what this amount is, and at what rate weight gain is expected.

UCP⁻

Uncoupling protein 1 (UCP1) is found in fat tissue and is involved in metabolic processes that create energy and then release it in the form of heat. The UCP1 gene is important for regulating normal body temperature and can impact RMR. Research shows that individuals with the GG or GA variants tend to have lower RMRs compared to individuals with the AA variant. As such, they need to consume less energy to maintain regular bodily functions.

Sources of High Energy Foods

Am	ount (calories)
Double patty hamburger (1)	580
Chicken Caesar salad (2 cups)	490
Pizza with pepperoni and cheese (1/2 of 12")	440
Mixed nuts, roasted (1/2 cup)	410
Carrot muffin (1 medium)	340
Avocado (1 fruit)	320
Cheeseburger (1)	320
Donut, chocolate covered (1)	270
French fries (20-25)	240
Croissant (1)	230

Source: Health Canada's Nutrient Value of Some Common Foods

Physical Activity

Physical activity has important benefits for mental health. physical fitness, weight maintenance and the prevention of many chronic illnesses. Cardiovascular conditioning exercises include those that elevate your heart rate for a sustained period of time, such as brisk walking, running, swimming and cycling, and improve the function of your heart, lungs and blood vessels. Skeletal muscle conditioning exercises include activities such as weight lifting or certain types of yoga, which improve muscle strength and power and improve bone health. Most forms of physical activity are beneficial; however, different baseline levels of physical activity, depending on variation in the FTO gene, are needed to achieve/maintain a healthy body weight. A healthy body weight promotes reproductive health through by helping to maintain adequate concentrations of reproductive hormones, developing sperm with high fertilization potential in men, and encouraging healthy ovulation in women*. Some individuals can achieve greater weight loss than others based on the amount and type of physical activity they perform. Research shows that variants in the FTO gene can impact your metabolic response to physical activity**. Physical activity can reduce the effects of the FTO gene on risk of overweight and obesity by as much as 75%***.

FTO

UThe FTO gene is also known as the 'fat mass and obesity-associated gene' since it can impact weight management and body composition. This gene's role in the body is related to metabolic rate, energy expenditure and energy balance. It is also expressed in regions of the brain that are involved in the regulation of energy intake. Current research shows that specific dietary and physical activity recommendations can substantially help with weight loss and weight maintenance in individuals with certain variants of the FTO gene.

Endurance Sports

Cross-country skiing Cycling Distance running	Rowing Soccer Triathlon	

Strength/Power Sports

Baseball	Racket sports
Hockey	Track and field
Martial arts	Weight lifting

Your Results

Gene	Marker
FTO	rs9939609
Response Variant	Your Variant
AA	TA

Your Response

Typical

Recommendation

Since you possess the TA or TT variant, you have a typical weight loss response from physical activity. At a minimum, meet the general physical activity guidelines. This can have a positive impact on body composition, weight management, and blood sugars, all of which influence fertility and healthy reproductive function. Your physical activity recommendations include at least 150 minutes per week of moderate-vigorous cardiovascular activity in bouts of 10 minutes or more. You should also include strengthening activities at least 2 days per week. These activities should involve major muscle groups.

Aim for 150 min/week of cardio and at least 2 days/week of muscle-strengthening activities.

^{*}Clark A et al. Weight loss in obese infertile women results in improvement in reproductive outcome for all forms of fertility treatment. Human Reproduction. 1998;13(6):1502-1505.

^{**} Nagai N et al. UCP1 genetic polymorphism (-3826A/G) diminishes resting energy expenditure and thermoregulatory sympathetic nervous system activity in young females. Int J Obesity. 2011;35:1050-5.

^{*} Stang J et al. Position of the Academy of Nutrition and Dietetics: Obesity, Reproduction, and Pregnancy Outcomes. Journal of the Academy of Nutrition and Dietetics. 2016;116(4):677-691.

** Andreasen et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumula-

tion. Diabetes. 2008;57:95-101.

**Reddon et al. Physical activity and genetic predisposition to obesity in a multiethnic longitudinal study. Scientific Reports
2016;6:1-10

Gene	Marker
FTO	rs9939609
Response Variant	Your Variant
AA	TA

Your Response

Typical

Recommendation

Since you have the TA or TT variant of the FTO gene, you have a typical weight loss response from consuming a moderate-to-high protein diet. Protein is important for hormone synthesis and building and maintaining reproductive tissues. It also keeps you feeling full, which may help you maintain a healthy body weight and improve your reproductive potential. Consume 20-30% of your energy from protein sources as part of a controlled energy diet.

Consume 20-30% of energy from protein.

Protein

Protein is a critical factor affecting fertility, such as hormone synthesis, glycemic control, and body composition. In addition, protein is essential for cell growth and development, and these processes are crucial for embryo development. Protein has also been shown to regulate appetite, allowing you to feel more satisfied with fewer calories. This may help you prevent overweight and obesity, which are associated with lower reproductive potential. For individuals at risk for overweight and obesity based on the FTO gene, a high protein diet can help with weight loss and weight maintenance over both the short-term and long-term.

FTO

The FTO gene is also known as the 'fat mass and obesity-associated gene' since it can impact weight management and body composition. This gene's role in the body is related to your metabolism, energy expenditure and energy balance. It is also expressed in regions of the brain that are involved in the regulation of energy or food intake. Current research shows that specific dietary and exercise recommendations can substantially help with fat loss and weight maintenance in individuals with certain variants of the FTO gene.

Sources of Protein

	Amount (g)
Chicken breast (75g)	25
Extra lean ground beef (75g)	23
Tofu, regular, extra firm (150g)	21
Salmon, baked (75g)	20
Cottage cheese (1/2 cup)	15
Lentils (3/4 cup)	14
Chickpeas (3/4 cup)	9
Skim milk (1 cup)	9
Almonds (1/4 cup)	8
Whole egg (1)	6

Source: Health Canada's Nutrient Value of Some Common Foods

Fat

Fat is an essential part of a healthy diet, and is needed for the absorption of the fat-soluble vitamins including vitamins A, D, E, and K. Each gram of fat provides more than double the number of calories as carbohydrates or protein, making it the most energy-dense nutrient. The total amount and types of fats that you consume can affect fertility and body composition. In general, unsaturated fats are more beneficial for the production of sperm and oocytes than saturated or trans fats. In addition, genetic variation affects how individuals who are trying to lose weight respond to the amount of fat that they eat*. This may affect their risk of overweight or obesity, which are associated with lower reproductive potential.

TCF7L2

The TCF7L2 gene produces a protein called transcription factor-7 like 2. This protein affects how the body turns on or off a number of other genes. Research shows that for individuals who possess the TT variant of the TCF7L2 gene, the amount of fat in the diet can significantly impact body composition (lean/muscle mass vs. fat mass) as well as the risk for being overweight. Furthermore, possessing the TT variant puts you at an increased risk for insulin resistance (weakened ability to control blood sugars) when your total fat intake is high. Consuming a low-to-moderate fat intake can help facilitate weight loss in individuals with the TT variant, which can in turn help with insulin resistance.

Sources of Fat

	Amount (g)
Macadamia nuts (1/4 cup)	26
Cheddar cheese (50g)	17
Butter (1 Tbsp)	16
Olive oil (1 Tbsp)	14
Swiss cheese (50g)	14
Pistachios (1/4 cup)	14
Lean ground beef (75g)	11
Goat cheese (50g)	11
Yogurt, 2-4% M.F. (3/4 cup)	8
Sockeye salmon (75g)	8

Source: Health Canada's Nutrient Value of Some Common Foods

Your Results

Gene	Marker
TCF7L2	rs7903146
Response Variant	Your Variant

TT

Your Response

CC

Typical

Recommendation

Since you possess the CC or TC variant of the TCF7L2 gene, you have a typical weight loss response based on your fat intake. However, to help ensure that you are consuming a healthy, well-balanced diet, consume 20-35% of your total daily energy needs from fat as part of a controlled energy diet.

Consume 20-35% of energy from fat.

^{*} Zhang X et al. FTO genotype and 2-year change in body composition and fat distribution in response to weightloss diets: The POUNDS LOST trial. Diabetes. 2012;61:3005-3011.

^{*} Mattei J et al. TCF7L2 genetic variants modulate the effect of dietary fat intake on changes in body composition during a weight-loss intervention. Am J Clin Nutr. 2012;96:1129-36.

Gene	Marker	
FTO	rs9939609	
Response Variant	Your Variant	
TA or AA	TA	

Your Response

Enhanced

Recommendation

Since you have the TA or AA variant of the FTO gene, you can enhance your weight loss by limiting saturated fat intake to less than 10% of total energy intake and consuming the rest of your recommended daily fat intake from unsaturated fats. Your intake of polyunsaturated fats should be at least 5% of your total energy intake, and the rest should come from monounsaturated fats. This can further help to decrease your risk of overweight and weight gain, which are important for adequate levels of hormones and healthy reproductive tissues.

Limit intake of saturated fat to no more than 10% of energy. Consume at least 5% of energy from polyunsaturated fat.

Saturated and Unsaturated Fats

There are two main types of dietary fats: saturated and unsaturated. Saturated fats are primarily found in animal-derived foods such as fatty meats, cheese, butter and other whole milk dairy as well as prepared foods such as pizza, baked goods, and many desserts. A diet high in saturated fat is associated with health conditions such as diabetes and obesity as well as fertility complications. Unsaturated fats, such as those found in olive oil, almonds and grape seed oil, may help to decrease the risk of diabetes and obesity, which are associated with a greater risk of infertility. Current research shows that variation in the FTO gene can impact the response to saturated and unsaturated fat. For individuals with the AA or TA variant, a high intake of unsaturated fat, and low intake of saturated fat in the diet can help facilitate weight loss, decrease fat stores around the abdomen and decrease the risk for obesity, which is associated with infertility*.

FTO

The FTO gene is also known as the 'fat mass and obesity-associated gene' since it can impact weight management and body composition. This gene's role in the body is related to metabolic rate, energy expenditure and energy balance. It is also expressed in regions of the brain that are involved in the regulation of energy intake. Current research shows that specific dietary and exercise recommendations can substantially help with weight loss and weight maintenance in individuals with certain variants of the FTO gene.

Sources of Unsaturated Fat

Monounsaturated Fat	Amount (g)
Macadamia nuts (1/4 cup)	20
Almond butter (2 Tbsp)	12
Olive oil (1 Tbsp)	10
Canola oil (1 Tbsp)	8
Peanut butter (2 Tbsp)	8
Polyunsaturated Fat	Amount (g)
Flaxseed oil (1 Tbsp)	10
Grape seed oil (1 Tbsp)	10
Sunflower oil (1 Tbsp)	9
Soybean oil (1 Tbsp)	8

Source: Health Canada's Nutrient Value of Some Common Foods

Monounsaturated Fat

Monounsaturated fats such as olive oil, almonds and avocados have been associated with reduced risk for infertility. Research shows that replacing just 2% of daily energy intake from trans fat with monounsaturated fat was associated with a substantially reduced risk of infertility*. Monounsaturated fats can help reduce "bad" (LDL) cholesterol levels and may also help increase "good" (HDL) cholesterol. Evidence indicates that these fats can help facilitate weight loss and lower body fat composition in some individuals based on their PPAR 2 gene**. Maintaining a healthy body weight contributes to the health of the reproductive system and may improve fertility.

PPARy2

The PPAR 2 gene is involved in the formation of fat cells. This gene is mainly found in fat tissue. Because of its involvement in the formation of fat, PPAR 2 can impact weight management and body composition. As a result, reproductive function can be improved. Specifically, individuals who have the GG or GC variant of the gene tend to experience greater weight loss and lose more body fat, compared to those with the CC variant, when they consume a diet high in monounsaturated fats.

Sources of Monounsaturated Fat

	Amount (g)
Macadamia nuts (1/4 cup)	20
Almond butter (2 Tbsp)	12
Olive oil (1 Tbsp)	10
Canola oil (1 Tbsp)	8
Peanut butter (2 Tbsp)	8
Sesame oil (1 Tbsp)	6

Source: Health Canada's Nutrient Value of Some Common Foods

Gene Marker PPAR₂ rs1801282

Response Variant GG or GC

Your Variant CC

Your Response

Typical

Recommendation

Since you possess the CC variant of the PPAR 2 gene, consuming more monounsaturated fats may not affect your ability to lose weight and lower your body fat. However, because of the important role of fats in reproductive and overall health, you should aim for a balance of saturated, monounsaturated and polyunsaturated fats to meet your total daily fat intake recommendation.

> Aim for a balance of saturated, monounsaturated and polyunsaturated fats to meet your total daily fat intake.

^{*} Phillips CM et al. High dietary saturated fat intake accentuates obesity risk associated with the fat mass and obesity-associated gene in adults. Journal of Nutrition. 2012;142:824-31.

^{*} Chavarro JE et al. Dietary fatty acid intakes and the risk of ovulatory infertility. Am J Clin Nutr. 2007; 85(1):

^{**} Garaulet M et al. PPAR Pro12Ala interacts with fat intake for obesity and weight loss in a behavioural treat-ment based on the Mediterranean diet. Molecular Nutrition and Food Research. 2011;55:1771-9.

 Gene
 Marker

 MCM6
 rs4988235

 Risk Variant
 Your Variant

 CC or CT
 CT

Your Risk

Slightly Elevated

Lactose

Lactose is a naturally occurring sugar found in dairy products. When lactose is digested, it is broken down into two different sugar molecules: glucose and galactose. Lactase is the enzyme needed to break down lactose. Some people do not produce any, or enough lactase. Because of this, lactose passes through the intestines undigested. When this occurs, gut bacteria in the intestines ferment the lactose, which produces gas that leads to bloating and cramps, and causes water to enter the intestine, guickly leading to diarrhea. These are the uncomfortable symptoms associated with lactose intolerance. Some people with lactose intolerance cannot tolerate any milk products, while others can tolerate small amounts of lactose. When dairy is consumed with a meal there can be minor symptoms or no symptoms at all, but consuming dairy on its own (especially fluid milk) can cause more severe symptoms. Due to these symptoms, individuals who are lactose intolerant may avoid dairy and, therefore, they may be less likely to meet dietary calcium and vitamin D recommendations. Because these nutrients play an important role in fertility, individuals who are lactose intolerant need to be particularly mindful of getting adequate amounts of these nutrients.

Lactose Intolerance

When lactose is not properly digested, it can cause uncomfortable symptoms such as stomach upset, gas, bloating, and/or loose stools. These symptoms usually develop about one hour after you consume lactose-containing products. Typically, individuals with lactose intolerance will have to consume a lactose-free or lactose-reduced diet for life or be sure to consume dairy products with a meal. Your risk for lactose intolerance depends in part on the MCM6 gene. Sometimes you can develop short-term lactose intolerance when you are sick. This may occur, for example, in an individual with undiagnosed celiac disease who is not yet consuming a gluten-free diet. However, once this individual consumes a strict gluten-free diet, the lactose intolerance tends to subside.

MCM6

MCM6 is part of the MCM complex that helps to regulate the expression of the LCT gene, which encodes lactase – the enzyme, which plays a role in breaking down lactose. Variations in this gene can impact your ability to break down lactose, therefore, impacting your risk for lactose intolerance. Individuals who possess the CC or CT variant may produce some lactase but the amount of lactase produced is limited. This variant may not predict lactose intolerance risk for individuals who are not of European descent.

Nutrition Considerations with a Lactose-Free Diet

Calcium and vitamin D are important for successful fertilization and development and maintenance of healthy reproductive tissues. Research has shown that individuals who are lactose intolerant tend to have lower calcium* and vitamin D** intake and blood levels. This has been linked to risk of miscarriage in women***. If you have lactose intolerance, you can still get enough calcium and vitamin D in the diet through fortified milk alternatives such as soy, almond, and rice beverages. Calcium and vitamin D are not added to all milk alternatives, so be sure to read the label to check that the products you are choosing have been "fortified with calcium and vitamin D." Lactose-containing milk, lactose-free milk, and fortified soy beverages are also excellent sources of protein, fat, vitamins and minerals, all of which are important dietary components that support fertility.

**Koek et al. The T-13910C polymorphism in the lactase phlorizin hydrolase gene is associated with differences in serum calcium levels and calcium intake. Journal of Bone and Mineral Research. 2010;25(9):1980-7.

**Alharbi O, El-Sohemy A. Lactose Intolerance (LCT -13910C>T) Genotype Is Associated with Plasma 25-Hydroxyvitamin D Concentrations in Caucasians: A Mendelian Randomization Study. Journal of Nutrition. 2017; 147(6):1063-1069.

***Hou W, Yan X, Bai C, Zhang X, Hui L, Yu X. Decreased serum vitamin D levels in early spontaneous pregnancy loss. European Journal of Clinical Nutrition. 2016;70(9):1004-1008.

Sources of Lactose

	Amount (g)
Cow's milk (1 cup)	12
Goat's milk (1 cup)	11
Chocolate milk (1 cup)	10
Buttermilk (1 cup)	9
Yogurt (3/4 cup)	7
Frozen yogurt (1/2 cup)	5
Ice cream (1/2 cup)	5
Cottage cheese (1/2 cup)	3
Sour cream (1/4 cup)	2
Hard cheese, example: Parmesan (50g)	<1

Source: Dietitians of Canada, Food Sources of Lactose

Recommendation

Since you possess the CT variant of the MCM6 gene, you should limit your intake of dairy products. If you are experiencing symptoms of lactose intolerance, try avoiding lactose and monitoring if your symptoms disappear. Sometimes you can train your body to produce more lactase enzymes by slowly introducing lactose into your diet. Men and women 19-50 years old should aim to consume up to 2 servings of milk and/or alternatives daily. Meet these recommendations by consuming lactose-containing products as tolerated as well as calcium- and vitamin D-fortified, lactose-free milk alternatives such as soy, almond, or rice beverage.

Limit dairy intake.

Gene	Markers
HLA	rs2395182 rs7775228 rs2187668 rs4639334 rs7454108 rs4713586
Risk Variants	Your Variants
algorithm	GT TT CT GG TT AA

Your Risk

Medium

Gluten

Gluten is a protein found in wheat, barley, rye and products made from these grains. Some oats also contain gluten. Many foods that contain gluten provide fibre from whole grains and can be an excellent source of vitamins and minerals. However, for some people, gluten can cause severe digestive problems leading to nutrient malabsorption, anemia and many serious health problems.

Gluten Intolerance

Celiac disease represents the most severe form of gluten intolerance and affects about 1% of the population. People with celiac disease require a gluten-free diet for life*. Non-celiac gluten sensitivity (NCGS) is a milder form of gluten intolerance that may affect 5% of the population. Individuals with NCGS often experience diarrhea, abdominal pain, fatigue and headaches when they consume glutencontaining foods. However, these adverse effects of gluten in individuals who do not have celiac disease are poorly understood, and NCGS remains controversial*. Undiagnosed celiac disease is associated with a number of serious fertility-related complications, in addition to nutrient deficiency and gastrointestinal symptoms. Research has shown that women with unexplained infertility, miscarriages or intrauterine growth restriction are at a significantly higher risk of having celiac disease than the general population**.

The HLA genes produce a group of proteins called the human leukocyte antigen (HLA) complex, which are responsible for how the immune system distinguishes between the body's own proteins and foreign, potentially harmful proteins. Research has shown that the HLA genes are the most important genetic predictor of gluten intolerance. Approximately 99% of people with celiac disease and 60% of those with non-celiac gluten sensitivity* have the DQ2 or DQ8 risk version of HLA, compared to only 30% of the general population. Six variations in the HLA genes can be used to classify individuals into predefined risk groups for gluten intolerance*. Risk prediction is based upon a scale of low, medium or high risk.

*Mark Wolters VM and Wijmenga C. Genetic background of celiac disease and its clinical implications. American Journal of

นองเขาแชนานรูป, 2.นบด, 1นง. 1ชนา-ว. "Tersigni C et al. Celiac disease and reproductive disorders: meta-analysis of epidemiologic associations and potential pathogenic mechanisms. Human Reproduction Update. 2014;20(4):582-593.

of the population High Risk

Nutrition Considerations with a Gluten-Free Diet

Gluten-free foods include all unprocessed vegetables, fruit, dairy products, meat, fish, poultry, nuts, legumes, seeds, fats and oils. Gluten-free grains include: rice, quinoa, corn, buckwheat, amaranth, and millet. For individuals who need to follow a glutenfree diet, foods to avoid include any products that are made with wheat, rye, barley or triticale. Pure oats should be consumed in moderation if tolerated, while regular oats (which contain wheat) should be avoided. For the vast majority of the population, consuming a gluten-free diet is unnecessary. Processed glutenfree products often have more calories, sodium, added sugar and fat and fewer nutrients compared to their gluten-containing counterparts.

Sources of Gluten

Major Souces of Gluten	Hidden Sources of Gluten
Bread	Salad dressing
Pasta	Pudding
Cereal	Imitation crab
Crackers	Vegan meat substitute
Oats*	Potato chips
Baked goods	French fries
Malt	Soup stock
Soy sauce	Chocolate and candy
Gravy	Processed meat
Barley or wheat based-beer	Canned soup
Vinegars	Instant rice
Wheat - incl rye, spelt and barley	Ice cream

* Pure oats do not contain gluten; however, oats are often cross-contaminated with aluten-containing grains

Recommendation

You have a medium risk for developing celiac disease; however, this does not mean you have celiac disease. Speak to your healthcare professional if you experience diarrhea, steatorrhea (excessive fat in your stool), cramps, flatulence, fatigue or joint pain while consuming gluten-containing foods, or if you have a family member with celiac disease. Major dietary sources of gluten include bread, pasta, cereal and any baked good made with wheat, barley or rye. It is not recommended that you immediately attempt to remove gluten from your diet, as eliminating gluten may interfere with the accuracy of celiac disease diagnostic tests. Gluten-free foods include all unprocessed vegetables, fruit, dairy products, meat, fish, poultry, nuts, legumes, seeds, fats and oils. Glutenfree grains include rice, quinoa, corn, buckwheat, amaranth and millet

> Medium risk for gluten intolerance.

Gene	Marker	
CD36	rs1761667	
Response Variant	Your Variant	
GG or GA	AA	

Your Response

Typical

Recommendation

Since you possess the AA variant of the CD36 gene, you are a 'low taster' of fats. This means that you require greater amounts of fat in your food to be able to detect the taste of fats than those who are 'super tasters.' In comparison, 'super tasters' are better able to detect the taste of fats at lower levels. Consuming too much fat, as well as too much saturated and trans fat, can lead to overweight and obesity, which can have negative effects on fertility. Refer to the 'Total Fats' section of your report for your recommended daily intake of fats.

Your ability to sense the fatty taste of foods is typical.

Fat Taste Perception

Food intake is largely determined by our taste perception and preferences for certain foods and beverages. The way that we perceive the taste of fatty foods is particularly important because our intake of fats can affect body composition, which can impact reproductive health. Fat is needed to produce sperm, oocytes, and reproductive hormones. It is also required to absorb certain vitamins including vitamins A, D, E, and K, all of which are essential to a healthy reproductive system. It provides 9 calories per gram, which is more than double the calories in a gram of protein or carbohydrate. Research shows that our preference for fatty foods can vary depending on which version of the CD36 gene we have*.

CD36

The cluster of differentiation 36 (CD36) gene is also known as fatty acid translocase. It is found on the surfaces of many cells and is involved in the transport of fat from the blood. Several studies have now linked variations in the CD36 gene to differences in the perception of the taste and texture of fats and oils. 'Super tasters' tend to be able to detect the taste of fats and oils at lower levels than 'low tasters.'

Sources of High Fat Foods

	High in Healthy (Unsaturated) Fat	Amount (g)
Cheddar cheese (50g)		17
Avocado (1/2 fruit)	✓	15
Olive oil (1 Tbsp)	✓	14
Butter (1 Tbsp)		12
French fries (20-25)		12
Hamburger (1)		12
Croissant (1)		12
Salmon (75g)	✓	9
Ice cream, chocolate (1/2 cup)		8
Homogenized milk (1 cup)		8

Source: Health Canada's Nutrient Value of Some Common Foods

Sugar Preference

Sugar intake is partly determined by our sweet taste preference and cravings for certain foods and beverages. There is considerable variability in individuals' preferences and cravings for sweet foods and beverages. Many factors may impact your preference for sugary foods, including the age when you were first introduced to sweets and psychological associations between consuming these foods and certain life experiences or emotions. In the brain, there are even 'pleasure-generating' signals given off in response to eating or drinking something sweet. Research shows that your intake of sweet foods can also be determined by your genes*. Excessive sugar consumption may lead to insulin resistance and type 2 diabetes, and it is associated with reduced fertility**.

* Eny KM et al. Genetic variant in the glucose transporter type 2 is associated with higher intakes of sugars in two distinct populations. Physiol Genomics. 2008;33:355-360.

** Chiu YH. Sugar-sweetened beverage intake in relation to semen quality and reproductive hormone levels in young men. Hum Reprod. 2014 Jul;29(7):1575-84.

GLUT2

Glucose transporter type 2 (GLUT2) is involved in regulating glucose (sugar) in the body. The expression of this gene has been found in areas of the brain that are involved in controlling food intake. Individuals who possess the TT or TC variant of this gene seem to have a greater preference for sweet foods and beverages and are more likely to overconsume sugar. For many athletes, longer training sessions, races and competitions often require sugar-containing sports drinks, gels, or chews to meet fuel needs. However, for optimal health, it is important to limit added sugars in your diet.

Sources of High Sugar Foods

	Amount (g)
Iced cappucino (2 cups)	56
Cola (1 can)	36
Citrus juice, frozen, diluted (1 cup)	32
Sports beverage (2 cups)	28
Caramels (40g)	26
Milk chocolate (50g)	26
Maple syrup (2 Tbsp)	24
Jellybeans	20
Popsicle (75g)	10
Jam (1 Tbsp)	10

Source: Health Canada's Nutrient Value of Some Common Foods

Your Results

Gene	Marker	
GLUT2	rs5400	
Risk Variant	Your Variant	
CT or TT	СТ	

Your Risk

Elevated

Recommendation

Since you possess the CT or TT variant of the GLUT2 gene, you are at an increased risk of over-consuming sugar. This means you may be more likely to enjoy sweet foods and beverages. Be mindful of this craving and aim to keep your intake of added sugar (sugar that is not naturally occurring in food, unlike that found naturally in sources such as intact fruit) below 5-10% of your total daily energy intake. A high intake of added sugar is linked to overweight and obesity, PCOS, and reduced semen quality.

You have a high preference for sugar.

EATING HABITS | PAGE 30 EATING HABITS | PAGE 31

^{*} Melis M, Sollai G, Muroni P, Crnjar R, Barbarossa IT. Associations between orosensory perception of oleic acid, the common single nucleotide polymorphisms (rs1761667 and rs1527483) in the CD36 gene, and 6-n-propylthiouracil (PROP) tasting. Nutrients 2015; 7(3): 2068-84.

Gene	Marker
MC4R	rs17782313
Risk Variant	Your Variant
CC or CT	TT

Your Risk

Typical

Recommendation

Since you possess the TT variant of the MC4R gene, you have a typical risk for eating between meals. To prevent consuming too many calories, avoid going longer than six hours without eating during the day. Monitor and respond to hunger cues, which may include a lack of energy, mood changes, stomach growling, weakness, dizziness, or having a headache. Choose wholesome snacks that are not excessive in calories.

Your tendency to eat between meals is typical.

Eating Between Meals

Eating between meals (i.e. snacking) can be beneficial if snacks are healthful and the extra calories are not in excess of those needed to maintain a healthy weight, which is an important factor for reproductive health. Healthy snacks can assist with regulating blood sugar levels and weight control, curbing food cravings and boosting energy levels. However, for many people snacking is often an unhealthy habit due to snack-food choices and/or excessive calorie intake beyond one's needs. For your overall health and wellness, it is important to manage emotional eating (psychological reasons for snacking), and focus on more healthful snacking when you feel hungry. Some reasons for emotional eating may include boredom, habit (i.e. eating in front of the television, or at certain times), stress, frustration, anxiety or loneliness. Research suggests that variations in the MC4R gene are associated with the likelihood of eating between meals, driven by the desire to eat more or less frequently depending on your genotype*.

MC4R

The MC4R gene codes for the melanocortin 4 receptor, which is found in the hypothalamus region of the brain. This is an area of the brain that controls hunger and appetite. The MC4R gene plays an important role in appetite regulation and hunger cues. Research shows that individuals with the CC or CT version of the MC4R gene are more likely to eat between meals often and have a heightened appetite.

Replace these foods	with these foods
Potato chips and dip	Whole wheat pita with hummus
Muffin	Whole wheat English muffin with peanut butter
Ice cream with toppings	Low-fat yogurt with fresh berries
Trail mix with added oils or sweets	Fibre-rich cereal with milk/alternative
'Veggie' chips	Fresh vegetables with low-fat dip
Pasta salad	Mixed salad topped with chickpeas
Nachos and cheese dip	Whole wheat crackers with low-fat cheese
Potato chips	Natural popcorn
Pizza Slice	Half a turkey sandwich with veggies

Starch

Carbohydrates are the main source of energy for our brain, muscles and hormone-producing organs. There are three main types of carbohydrates: sugar, starch, and fiber. Wholesome sources of carbohydrates in the diet include minimally processed starches such as whole grain breads and cereals, rice, root vegetables, beans, lentils, chickpeas, fruits, and low-fat dairy products, when they are consumed in moderation. Less wholesome sources of carbohydrates include refined grains, sugar-sweetened beverages and certain baked goods. Research now shows that your ability to digest starch depends partially on the AMY1 gene. Having the AA variant of the AMY1 gene decreases your ability to break down starch and your blood sugar control after eating starchy foods. Individuals with the AA variant have a greater risk for insulin resistance when consuming a highstarch diet*. Insulin resistance is associated with impaired reproductive potential and PCOS**.

*Mandel AL and Breslin PA. High endogenous salivary amylase activity is associated with improved glycemic homeostasis following starch ingestion in adults. Journal of Nutrition. 2012;142:853-858.
**Chavarro J et al. A prospective study of dietary carbohydrate quantity and quality in relation to risk of ovulatory infertility. European Journal of Clinical Nutrition. 2007;63(1):78-86.

AMY1

AMY1 is a gene that codes for the amylase enzyme that helps digest starch. Salivary amylase is the enzyme found in your saliva, which begins the process of digesting starch that you consume. Levels of this enzyme are linked to the AMY1 gene. Certain populations that traditionally consume higher carbohydrate (starch) diets tend to possess the TT or AT variant of the AMY1 gene, compared to populations that traditionally consume lower carbohydrate (starch) diets. The TT or AT variant of the AMY1 gene is associated with a greater number of copies of the gene, so individuals with these variants produce more of the enzyme. Research now shows that when you have the AA variant, you may have a decreased ability to digest starches compared to those with the TT or AT variant.

Sources of Starch

	Amount (g)
Spaghetti, cooked (1 cup)	35
Medium baked potato (150g)	30
Long-grain white rice (1/2 cup)	25
Tortilla (20 cm)	23
Sweet potato, cubed (1 cup)	17
Oats, uncooked (1/3 cup)	15
Navy beans (1/2 cup)	14
Sweet potato, without skin (60g)	12
Corn kernels (1/2 cup)	10
Bread (1 slice)	10

Source: http://nutritiondata.self.com

Your Results

Gene	Marker
AMY1	rs4244372
Response Variant	Your Variant

Your Response

AA

AT

Typical

Recommendation

Since you possess the TT or AT variant of the AMY1 gene, you have a typical ability to digest and metabolize starches. Aim to meet your carbohydrate needs through nutritious sources of carbohydrates such as whole grains, fruits and vegetables. Consume high-starch foods only in moderation.

Your ability to metabolize starch is typical.

^{*} Stutzmann F et al. Common genetic variation near MC4R is associated with eating behaviour patterns in European populations. Int J Obes. 2009;33:373-378.

Gene **BDNF**

rs6265

Marker

Response Variant AA or AG

Your Variant AA

Your Response

Enhanced

Implications

Since you possess the AA or AG variant of the BDNF gene, you are more likely to experience greater enjoyment and positive mood changes from exercise. You also tend to perceive your exertion level during exercise to be lower than individuals with the GG variant. These responses to exercise result in a heightened motivation to exercise and greater likelihood that you will continue to exercise regularly. Therefore, you are at a genetic advantage when it comes to motivation to begin or continue regular exercise.

You have an enhanced innate motivation to

Motivation to Exercise

Your attitude toward exercise and the effect it has on your mood can greatly impact your likelihood of starting or maintaining a physically active lifestyle. Research shows that individuals who possess the AA or AG variant of the BDNF gene are more likely to experience positive mood changes and exercise for enjoyment. They also perceive their effort and exertion level as lower during exercise compared to individuals who possess the GG variant*. All of these factors impact motivation to exercise. Being physically active has a multitude of benefits on one's fertility, including improved body fat levels, blood sugars, blood pressure, and blood lipid profiles. These improvements can influence hormone levels, reproductive tissue function, and ability to conceive. Individuals who engage in regular physical activity have been shown to be more fertile than those who are sedentary**.

BDNF

The brain-derived neurotrophic factor is a protein that is encoded by the BDNF gene. This protein works in regions of the brain to influence the nervous system, musculature, and blood vessels, all of which are important to exercise. Because of the complexity of mental stamina and the psychological response to exercise, the BDNF gene is only one of many possible genetic factors that may influence responses to exercise and future exercise behavior. Nevertheless, research shows that those with the AA or AG variant of the BDNF gene derive greater enjoyment or pleasure and improvements in mood from exercise and a lower perception of effort during exercise compared to those without this variant.

Exercise Behavior

Participating in physical activity can improve fertility by regulating blood sugars, improving body composition, and modulating hormone levels in the blood*. Research shows that genetic differences influence the likelihood of engaging in physical activity. The CYP19A1 and LEPR genes have been identified as key contributors to one's probability of participating in physical activity**.

CYP19A1 & LEPR

The CYP19A1 gene helps to make the enzyme aromatase, which is involved in hormone conversion. The exact physiological pathway by which this gene impacts exercise behavior is unknown. However, current research shows that those who have the AA or GA variant of the CYP19A1 gene are more likely to exercise compared to those with the GG variant. The LEPR gene helps to make the leptin receptor protein, which helps to regulate body weight. The precise relationship between variations in the LEPR gene and exercise behavior may stem from this gene's involvement in regulating energy balance. Those who have the TT or GT variant of the LEPR gene are more likely to participate in physical activity compared to those who have the GG variant.

Your Results

Genes

Markers

CYP19A1 LEPR

rs2470158 rs12405556

Response Variants

Your Variants

algorithm

GG GT

Your Response

Typical

Implications

Based on your LEPR and CYP19A1 variants, you have a typical likelihood of engaging in physical activity. Set monthly SMART (specific, measureable, attainable, realistic, timely) goals and consider using mental imagery; these can further enhance your motivation. Having an exercise partner can also enhance your likelihood of participating in physical activity.

You have a typical likelihood of engaging in physical activity.

^{*} Bryan A et al. A transdisciplinary model integrating genetic, physiological, and psychological correlates of voluntary exercise. Health Psychol. 2007;26:30-39.

Caldwell Hooper A et al. What keeps a body moving? The brain-derived neurotrophic factor val66met polymorphism and intrinsic motivation to exercise in humans, J Behay Med. 2014;37(6):1180-92.

^{*} McKinnon C et al. Body mass index, physical activity and fecundability in a North American preconcep tion cohort study. Fertility and Sterility. 2016;106(2):451-459.

Gaskins A et al. Physical activity and television watching in relation to semen quality in young men. British Journal of Sports Medicine. 2013;49(4):265-270.

McKinnon C et al. Body mass index, physical activity and fecundability in a North American preconception cohort study. Fertility and Sterility. 2016;106(2):451-459.
 De Moor MH et al. Genome-wide association study of exercise behavior in Dutch and American adults.

Med Sci Sports Exerc, 2009;41:1887-95.

Gene ACTN3

rs1815739

Response Variant

Your Variant

Marker

CC or TC

CC

Your Response

Ultra

Implications

Since you possess the CC variant of the ACTN3 gene, you have a genetic advantage to excel in strength and power-based activities. These activities are important for building and maintaining muscle mass, and supporting a healthy body composition. Aim to participate in strengthening activities at least two days per week.

You have a genetic advantage to excel in power sports.

Power and Strength

Strengthening activities strengthen your muscles and bones. Muscle-building exercises can also benefit blood sugar regulation and help achieve and maintain a healthy body weight, which can help to regulate reproductive function and fertile potential. Examples of these activities include body weight exercises such as push-ups, sit-ups, and lunges as well as lifting weights and working with resistance bands. Some activities of daily living or household chores are also considered strengthening activities, such as strenuous gardening, carrying heavy groceries or running up stairs. Research shows that the ACTN3 gene plays a major role in your genetic predisposition to excelling in strength and power based activities*. Being physically active has a multitude of benefits on one's fertility, including improved body fat levels, blood sugars, blood pressure, and blood lipid profiles. These improvements can influence hormone levels, reproductive tissue function, and ability to conceive. Individuals who engage in regular physical activity have been shown to be more fertile than those who are sedentary**.

ACTN3

There are two types of muscle fibers: slow twitch and fast twitch. Both fiber types are needed in all sports and exercises, however, there will be a higher use and demand for one fiber type versus the other depending on the sport. Fast twitch muscle fibers contract with greater speed and force, which are needed for short bursts of intense activities including sprinting, jumping and acceleration and change of direction in team sports. Slow twitch fibers contract for longer periods and at lower intensities and are used in activities such as longer distance endurance sports like crosscountry skiing, running, swimming and cycling. The ACTN3 gene encodes the alpha-actin 3 protein, which is only expressed in fast twitch muscle fibers. Therefore, certain variations in this gene can be beneficial for exercises or sports requiring strength and power. In particular, individuals with the CC variant of ACTN3 are more likely to excel at power or strength-based sports. Those with the TC variant have a slightly enhanced power and strength potential.*

*Garton and North. The effect of heterozygosity for the ACTN3 null allele on human muscle performance. Med Sci Sports Exerc. 2015 [Epub ahead of print].

Endurance

Endurance activities refer to exercises that cause your heart rate to increase, such as brisk walking, jogging, biking, swimming, or dancing. Endurance or aerobic exercise is often referred to as 'cardio'. Your VO2 max or maximal aerobic capacity is a measurement of the maximum amount of oxygen that your body is able to process during 1 minute of exercise and is a marker of physical fitness. A higher VO2 max generally results in a performance advantage when it comes to endurance activities, although many factors play a role. Research shows that several genes impact your genetic predisposition to excelling in endurance activities*. Being physically active has a multitude of benefits on one's fertility, including improved body fat levels, blood sugars, blood pressure, and blood lipid profiles. These improvements can influence hormone levels, reproductive tissue function, and ability to conceive. Individuals who engage in regular physical activity have been shown to be more fertile than those who are sedentary**.

study. Fertility and Sterility. 2016:106(2):451-459

ADRB3, NRF2, GSTP1 & NFIA-AS2

ADRB3, NRF2, GSTP1 and NFI-AS2 are all involved in physiological processes that impact your endurance abilities. The ADRB3 gene codes for the beta-3 adrenergic receptor, which is involved in energy metabolism as well as body temperature regulation. Variations in this gene have been linked to enhanced endurance performance. The NRF2 gene codes for the nuclear respiratory factor, and has also been linked to athletic performance status. This is related to its role in the formation of mitochondria - the part of the cell responsible for respiration and energy production. For the NFIA-AS2 gene, individuals with the CC variant tend to have greater VO2 max, which is advantageous for endurance exercise such as running, swimming, rowing, cycling, and many team sports. The GSTP1 gene, which codes the enzyme glutathione S-transferase P1, has also been linked to greater improvements in VO2 max in response to aerobic training in the GG and GA variants. Together, these genes can predict your genetic advantage for excelling in endurance sports.

Your Results

Genes NFIA-AS2 ADRB3 NRF2 GSTP1

rs1572312 rs4994 rs12594956 rs1695

Markers

Response Variants

algorithm

Your Variants CC TTCA AG

Your Response

Typical

Implications

Based on your DNA, your endurance potential is typical. You may need higher levels of training to achieve the same level of cardiovascular fitness as an individual with a genetic advantage. Refer to the physical activity recommendations in the Weight Management & Body Composition section of this report for your specific cardio activity recommendations.

Your endurance potential is typical.

FITNESS & PHYSICAL ACTIVITY | PAGE 36

FITNESS & PHYSICAL ACTIVITY | PAGE 37

^{*} Ma F et al. The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and me-

^{**} McKinnon C et al. Body mass index, physical activity and fecundability in a North American preconception cohort study. Fertility and Sterility. 2016;106(2):451-459.

^{*} Ahmetov I et al. Genome-wide association study identifies three novel genetic markers associated with elite endurance performance. Biol Sport. 2015;32(1):3-9.
**McKinnon C et al. Body mass index, physical activity and fecundability in a North American preconception cohort

Gene

MT rs4680

Response Variant

GG or GA

Your Variant
GA

Marker

Your Response

Enhanced

Implications

Since you possess the GG or GA variant of the COMT gene, you have enhanced pain tolerance. To increase your pain tolerance even further, there are several strategies that you can use such as practicing deep breathing, and changing negative thoughts to positive thoughts when you are undergoing pain. For example, if you go for a vigorous run, try to shift your focus away from the discomfort you may be feeling in your muscles, and focus on how the running is positively impacting your health. Exercising more often can also help to decrease pain perception during physical activity.

You have a heightened pain tolerance.

Pain

Pain is an unpleasant feeling triggered by the nervous system that can be mild to severe. Pain tolerance refers to the maximum amount of pain that someone can withstand. Pain threshold is a term that refers to the point where you begin to feel pain that causes discomfort to the extent that it becomes difficult for you to withstand. It is a threshold at which you cannot continue to exercise at a certain intensity level due to an intolerable level of discomfort. There are substantial differences in the way, or the degree to which people feel pain. Overall, men tend to have higher pain tolerances than women. Research shows that variations in the COMT gene also impact how we feel and perceive pain*.

* Tammimäki A, Männistö PT. Catechol-O-methyltransferase gene polymorphism and chronic human pain: a systematic review and meta-analysis. Pharmacogenet Genomics. 2012;22(9):673-91.

COMT

The Catechol-O-methyltransferase (COMT) gene is involved in pathways in the body that process pain signals. Because of this, researchers have studied how variations in this gene can impact our perception of pain. Studies show that the COMT gene is a significant predictor of pain tolerance. Specifically, individuals with the GG or GA variant tend to experience less pain compared to those with the AA variant.

Achilles Tendon Injury

Your Achilles tendon starts at the bones in your heels and continues up to your calf muscles. It is one of the largest and strongest tendons in the human body. This tendon gives you the ability to point your toes and extend your foot. Unfortunately, injuries to the Achilles tendon are common. They typically arise from doing exercises that require a sudden surge of energy. Symptoms of an Achilles tendon injury include extreme pain, tenderness, swelling, or stiffness along the back of your foot and above your heel. Incorporating regular physical activity into your lifestyle is important in maintaining a healthy reproductive system. Your risk of developing an Achilles tendon injury depends in part on the COL5A1 gene*.

* September AV et al. Variants within the COL5A1 gene are associated with Achilles tendinopathy in two populations. Brit J Sport Med. 2009;43:357–365.

COL5A1

The COL5A1 gene directs the body to produce a protein called collagen alpha-1(V) chain, which plays an important role in the creation of collagen. Collagen is the protein that is used to make connective tissues in the body. Because of the COL5A1 gene's role in the creation of connective tissue, scientists have studied the link between this gene and Achilles tendon injury risk. It is now understood that individuals with the CT or TT variant of COL5A1 have a higher risk for developing an Achilles tendon injury.

Your Results

 Gene
 Marker

 COL5A1
 rs12722

Risk Variant Your Variant

CT or TT CC

Your Risk

Typical

Implications

Since you possess the CC variant of the COL5A1 gene, you have a typical risk of developing an Achilles tendon injury. To decrease your risk, be mindful of activities requiring a surge of energy or overextension of this tendon, such as uphill running. Preventive measures include additional stretching of your calf muscles and increasing the duration of your warm up and cool down during exercise sessions.

You have a typical risk for Achilles tendon injury.

International Science Advisory Board

Ahmed El-Sohemy, PhD

Dr. Ahmed El-Sohemy is the Founder of Nutrigenomix Inc. and serves as the President and Chief Scientific Officer. He also serves as Chair of Nutrigenomix's International Science Advisory Board (SAB), which consists of key opinion leaders in the field of nutrigenomics. Dr. El-Sohemy obtained his PhD from the University of Toronto and completed a postdoctoral fellowship at the Harvard School of Public Health. He currently holds a Canada Research Chair in Nutrigenomics at the University of Toronto and serves on Health Canada's Science Advisory Board. Dr. El-Sohemy has published in the top scientific and medical journals with more than 120 peer-reviewed publications and has given more than 150 invited talks around the world. He is on the editorial board of 8 journals, and has served as an expert reviewer for more than 30 different scientific and medical journals and 12 research granting agencies. He has been a member of international expert advisory panels and scientific advisory boards of several organizations.

David Castle, PhD

David Castle is Professor and Chair of Innovation in the Life Sciences at the University of Edinburgh. His research focuses on social aspects of life science innovation including democratic engagement, regulation and governance, and intellectual property and knowledge management. Prof. Castle is a world-renowned expert on the social, ethical and legal aspects of nutrigenomics. He is author of a book entitled Science, Society, and the Supermarket: The Opportunities and Challenges of Nutrigenomics, and has published extensively on the social dimensions of science, technology and innovation. Prof. Castle has held several major research awards and has considerable experience leading strategic research initiatives and research project management. Prof. Castle has consulted widely to government and industry on issues such as the impact of national technology transfer policies and programs, intellectual property and knowledge management strategies, and the role of non-scientific considerations in the regulation of science and technology.

Lynnette R Ferguson, D.Phil. (Oxon.), DSc

Dr. Lynn Ferguson is Program Leader of Nutrigenomics New Zealand. She obtained her D.Phil. from Oxford University working on DNA damage and repair. After her return to New Zealand, she began working as part of the Auckland Cancer Society Research Centre, using mutagenicity testing as a predictor of carcinogenesis. In 2000, she took on a 50% role as Head of a new Discipline of Nutrition at The University of Auckland. She has recently been investigating the interplay between genes and diet in the development of chronic disease, with particular focus on Inflammatory Bowel Disease. As Program Leader of Nutrigenomics New Zealand she is working with a range of others to bring nutrigenomics tools to the New Zealand science scene. She has supervised more than 30 students and has more than 300 peer reviewed publications. Dr. Ferguson serves as one of the managing Editors for Mutation Research: Fundamental and Molecular Mechanisms of Mutation, as well as on the Editorial Boards of several other major journals.

J. Bruce German, PhD

Bruce German is the Director of the Foods for Health Institute at the University of California Davis, and is Professor of Food Science and Technology (http://ffhi.ucdavis.edu/). Dr German received his PhD from Cornell University and joined the faculty at the University of California (Davis) in 1988. In 1997, he was named the first John E. Kinsella Endowed Chair in Food, Nutrition and Health. His research interests in personalized nutrition include the structure and function of dietary lipids, the role of milk components in food and health and the application of metabolic assessment to personalizing diet and health. Dr German has published more than 350 papers and holds a number of patents related to various technologies and applications of bioactive food components. The research articles from his lab rank in the top 5 most cited in the field.

David Jenkins, MD, DSc, PhD

Dr. Jenkins earned his MD and PhD at Oxford University, and is currently a Professor in both the Departments of Medicine and Nutritional Sciences at the University of Toronto. He is also a staff physician in the Division of Endocrinology and Metabolism and the Director of the Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital. Dr Jenkins has published over 300 peer reviewed articles and given hundreds of invited talks around the world. He has served on numerous international committees to set guidelines for the treatment of diabetes and most recently on the new joint United States Canada DRI system (RDAs) of the National Academy of Sciences. His team was the first to define and explore the concept of the glycemic index of foods and demonstrate the breadth of metabolic effects of viscous soluble fiber. He has received many national and International awards in recognition of his contribution to nutrition research. Dr Jenkins currently holds a Canada Research Chair in Nutrition and Metabolism.

Jose Ordovas, PhD

Jose M. Ordovas is Professor of Nutrition and Director of the Nutrigenomics Laboratory at the United States Department of Agriculture, Human Nutrition Research Center on Aging at Tufts University in Boston. After obtaining his PhD from the University of Zaragoza, Spain, he completed postdoctoral work at Harvard, MIT and Tufts University. Dr Ordovas' major research interests focus on the genetic factors predisposing to cardiovascular disease and their interaction with environmental factors. Dr Ordovas has published ~700 articles in peer reviewed journals, and written numerous reviews and edited 5 books on nutrigenomics. He has been an invited speaker at hundreds of International meetings all over the world and is currently a member of the Institute of Medicine's Food and Nutrition Board (National Academies). He serves as Editor for Current Opinion in Lipidology (Genetics Section), and on the Editorial Board of numerous journals. Dr Ordovas is a Member of Honor of the Spanish Society of Atherosclerosis and has received other awards for his contributions to the field of nutrigenomics.

Ben van Ommen, PhD

Dr. Ben van Ommen is Director of the Nutrigenomics Organisation (NuGO) and Principal Scientist at TNO, one of the largest independent research organisations in the area of nutrition world-wide. He is also Director of the TNO systems biology program and leading the activities on nutrigenomics, nutritional systems biology, personalized health and personalized medicine. His research applies systems biology to metabolic health and metabolic disease, focusing on understanding all relevant processes involved in maintaining optimal health and causing specific disease sub-phenotypes, developing new biomarkers and treatment strategies.

Nanci Guest, RD, MSc, CSCS, PhD(c)

Nanci Guest is a registered dietitian (sport), certified personal trainer and a certified strength and conditioning specialist, and she has been working in private practice in this field for two decades. She is currently completing her doctoral research in the area of nutrigenomics and athletic performance at the University of Toronto. She completed her BSc in agriculture and dietetics, and her MSc in nutritional sciences with a sport focus at the University of British Columbia. She has published her research in top journals, presented at international meetings and has given dozens of invited talks around the world. Ms Guest is a global consultant to professional and amateur athletes and teams. She was the Head Dietitian at both the Vancouver 2010 Olympics and the Toronto 2015 Pan Am games, and served as a consultant to a variety of international athletes in preparation for the Sochi 2014 and Rio 2016 Olympics. She was also involved in creating past nutrition guidelines for athletes for the International Olympic Committee.

PAGE 40 PAGE 41

This report is for information purposes only and is not intended to be used as medical advice. The advice in this report is not intended to treat, diagnose or cure any medical condition or disease. It is intended for general health and wellness purposes only and is not specific to clients who require a specific nutrition care plan based on a certain disease or condition. Clients with medical conditions should not change or stop their medications or medical care without consulting with their physician first. The advice in this report is not intended for children. The Nutrigenomix Fertility panel has not been cleared or approved by the United States Food and Drug Administration. If you have any questions, please ask your healthcare provider or contact us at info@nutrigenomix.com. For Terms of Use and Privacy information please visit our website at www.nutrigenomix.com.